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Foreword

Advances in science and medicine are closely linked; they are characterised by 
episodic imaginative leaps, often with dramatic effects on mankind and beyond. 
The advent of body sensor networks represents such a leap. The reason for this 
stems from the fact that all branches of modern medicine, ranging from prevention 
to complex intervention, rely heavily on early, accurate, and complete diagnosis 
followed by close monitoring of the results. To date, attempts at doing this 
consisted of intermittent contact with the individual concerned, producing a series 
of snapshots at personal, biochemical, mechanical, cellular, or molecular levels. 
This was followed by making a series of assumptions which inevitably resulted in a 
distortion of the real picture. 

Although the human genome project has shown that we are all “equal”, it 
confirmed the fact that each one of us has unique features at many levels, some of 
which include our susceptibility to disease and a particular response to many 
external stimuli, medicines, or procedures. This has resulted in the concept of 
personalised medicines or procedures promised to revolutionise our approach to 
healthcare. To achieve this, we need accurate individualised information obtained at 
many levels in a continuous fashion. This needs to be accomplished in a sensitive, 
respectful, non-invasive manner which does not interfere with human dignity or 
quality of life, and more importantly it must be affordable and cost-effective.  

This book about body sensor networks represents an important step towards 
achieving these goals, and apart from its great promise to the community, it will 
stimulate much needed understanding of, and research into, biological functions 
through collaborative efforts between clinicians, epidemiologists, engineers, 
chemists, molecular biologists, mathematicians, health economists, and others. It 
starts with an introduction by the editor, providing a succinct overview of the 
history of body sensor networks and their utility, and sets the scene for the 
following chapters which are written by experts in the field dealing with every 
aspect of the topic from design to human interaction. It ends with a chapter on the 
future outlook of this rapidly expanding field and highlights the potential 
opportunities and challenges.  

This volume should act as a valuable resource to a very wide spectrum of 
readers interested in, or inspired by, this multifaceted and exciting topic. 

Professor Sir Magdi Yacoub 
November 2005 

London  
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1
Introduction

Omer Aziz, Benny Lo, Ara Darzi, and Guang-Zhong Yang 

1.1 Wireless Sensor Networks 

Over the past decade, the miniaturisation and cost reduction brought about by the 
semiconductor industry have made it possible to create computers that are smaller 
in size than a pin head, powerful enough to carry out the processing required, and 
affordable enough to be considered disposable. It is thought that this reduction in 
size and increase in processing capability is likely to continue over the next two 
decades, with computers becoming even smaller and cheaper year by year [1]. 
Similarly, advances in wireless communication, sensor design, and energy storage 
technologies have meant that the concept of a truly pervasive Wireless Sensor Net-
work (WSN) is rapidly becoming a reality [2]. Integrated microsensors no more 
than a few millimetres in size, with onboard processing and wireless data transfer 
capability are the basic components of such networks already in existence [3, 4]. 
Thus far, a range of applications have been proposed for the use of WSNs and they 
are likely to change every aspect of our daily lives. 

One of the first applications developed to utilise large-scale pervasive wireless 
sensor networks was “Smart Dust.” This was developed at the University of Cali-
fornia (UC) at Berkeley and funded by the Defence Advanced Research Projects 
Agency (DARPA). The aim of the project was to produce a self-contained, millime-
tre-scale sensing and communication platform for massively distributed sensor net-
works [4]. Primarily meant as a military application, the “Smart Dust” concept in-
volved the use of thousands of tiny wireless sensor “motes” that could be spread 
over a large battlefield area, allowing enemy movements to be monitored in a cov-
ert manner.  

In the early stages of the project, the team gained experience by building rela-
tively large motes using Commercial Off-The-Shelf (COTS) components. With co-
operation from Intel, these motes were created as an open-source hardware and 
software platform, combining sensors, low power wireless communication, and 
processing into a single architecture. The motes were also designed to have the abil-
ity to “self-organise” (resulting in a self-configuring WSN), and carry out onboard 
signal processing and distributed inferencing tasks prior to sending relevant infor-
mation to a central control. Whilst tiny, ubiquitous, low-cost, Smart Dust motes 
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have not yet been realised, many reasonably small motes are commercially avail-
able. Existing designs have already integrated a range of sensors monitoring a vari-
ety of environmental factors including temperature, humidity, barometric pressure, 
light intensity, tilt and vibration, and magnetic field with short-distance wireless 
communication.  

In addition to its military application, Smart Dust may eventually be used in a 
number of different settings ranging from deploying nodes into the atmosphere for 
weather condition monitoring, to placing them in environments such as factories to 
monitor their production output. As an example, Figure 1.1 illustrates two images 
of optical Smart Dust motes currently being developed. It is interesting to note that 
researchers have also approached Smart Dust from a biotechnology perspective to 
produce motes from chemical compounds rather than electrical circuitry [5].  

One of the key developments for WSNs is the small, open source (freely avail-
able) energy-efficient software operating system known as the Tiny Micro-
threading Operating System, or “TinyOS”, which has been developed at UC Berke-
ley. This operating system provides a basic framework and development environ-
ment for WSNs, and it functions well under the constraints of power, size, and cost. 
TinyOS software runs both the hardware and network, making sensor measure-
ments, routing decisions, and controlling power dissipation.  

Figure 1.1 A proposed solar-powered mote (left) and its magnified structural 
field-of-view (right) (courtesy of Professor K. Pister, University of California 
at Berkeley).

Currently, the new applications emerging for WSNs can be categorised into 
three types as follows: those used for monitoring environments (indoor, outdoor, 
urban or countryside), monitoring objects (such as machines and buildings) and 
monitoring the interaction of these objects with environments [6]. For example, 
companies such as British Petroleum (BP) have picked up on the huge potential of-
fered by WSN technology and have recently embarked on a program to develop its 
large-scale use. One example of this is the setting up of an experimental WSN for 
monitoring their refinery equipment, in order to measure abnormal vibration and 
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thereby to alert engineers to a potentially malfunctioning piece of equipment before 
it actually breaks down. BP also aims to use a long-distance WSN to remotely 
monitor customers' liquefied petroleum gas tank fill levels. They intend to use ultra-
sonic sensors placed at the base of the tanks to detect the fill level, which is then 
transmitted via a low earth orbit satellite to a control station [2]. As a result, their 
customers may be alerted to the need to refill their tanks before the fuel actually 
runs out. Achieving this level of sensor coverage with wired sensors would other-
wise be more than simply expensive and difficult to set up, but also almost impos-
sible to maintain.  

Another example of proposed WSN use is the “Zebranet” project based at 
Princeton University. This aims to set up an ad hoc WSN with the bandwidth and 
computational capabilities required to monitor the long-range migration, interspe-
cies interactions, and nocturnal behaviour of zebras in Africa [7]. In this case, it is 
difficult to imagine how this could be achieved without a WSN. 

Whilst WSN technology continues to evolve for the broad range of applications 
and settings described above, it does not specifically tackle the challenges associ-
ated with human body monitoring. The human body consists of a complicated in-
ternal environment that responds to and interacts with its external surroundings, but 
is in a way “separate” and “self contained”. Human body monitoring using a net-
work of wireless sensors may be achieved by attaching these sensors to the body 
surface as well as implanting them into tissues. In essence, the human body envi-
ronment is not only on a smaller scale, but also requires a different type and fre-
quency of monitoring, with appreciation of different challenges than those faced by 
WSN. The realisation that proprietary designed WSNs are not ideally suited to 
monitoring the human body and its internal environment has led to the development 
of a wireless Body Sensor Network (BSN) platform.  

Specifically designed for the wireless networking of implantable and wearable 
body sensors, the BSN architecture aims to set a standard for the development of a 
common approach towards pervasive monitoring. Figure 1.2 is a diagram illustrat-
ing a simplified example of such an architecture. It represents a patient with a num-
ber of sensors attached to their body, each sensor also being connected to a small 
processor, wireless transmitter, and battery, and all together forming a “BSN node 
complex” capable of seamlessly integrating with home, office, and hospital envi-
ronments. The BSN node ensures the accurate capture of data from the sensor to 
which it is connected, carries out low level processing of the data, and then wire-
lessly transmits this information to a Local Processing Unit (LPU). The data from 
all the sensors is in this way collected by the LPU, processed further, and fused be-
fore being wirelessly transmitted to a central monitoring server either via a wireless 
LAN, Bluetooth, or mobile phone (GPRS or 3G) network [8].  

Although the challenges faced by BSNs are in many ways similar to WSNs, 
there are intrinsic differences between the two which require special attention. 
Some of these differences are illustrated in Table 1.1. The purpose of this chapter is 
to provide an overview of the development and history of wireless BSNs, highlight-
ing not only the challenges lying ahead but also the direction of its future develop-
ment. 
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Figure 1.2 Diagrammatic representation of the BSN architecture with wire-
lessly linked context-aware “on body” (external) sensors and its seamless inte-
gration with home, working, and hospital environments. (See colour insert.) 

1.2 BSN and Healthcare 

The observations by Hippocrates, the Greek founder of modern medicine, that au-
dible sounds emanating from the chest were produced by the heart, ultimately led to 
the development of the stethoscope in 1816. Since then, diagnostic tools have con-
tinued to evolve and have revolutionised medical practice, allowing doctors to ex-
tract more and more important information about their patients’ physiological 
states. This increased level of sophistication is perfectly illustrated by the stetho-
scope, which has evolved from a simple tube, into a device has been carefully engi-
neered to accurately relay heart and chest sounds, allowing clinicians to recognise 
disease processes. The most advanced stethoscopes can also digitally filter and en-
hance this sound quality. Whilst these diagnostic tools continue to develop, they 
still offer information that is nothing more than a “snapshot in time”. The next great 
challenge for diagnostic devices lies in their ability to monitor a patient’s physical 
and biochemical parameters continuously, under natural physiological status of the 
patient, and in any environment. The development of wireless BSNs offers a plat-
form to establish such a health monitoring system, and represents the latest evolu-
tion of diagnostic tools. BSN patient monitoring systems will provide information 
that is likely to be as important, dramatic and revolutionary as those initial observa-
tions made by Hippocrates himself.  
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1.2.1 Monitoring Patients with Chronic Disease 

The scale of the requirement for patient monitoring in healthcare systems can only 
be appreciated once the magnitude of human disease processes requiring early di-
agnosis and treatment is considered. Several examples illustrate this need, but none 
as dramatically as cardiovascular related illnesses. Abnormalities of heart rhythm 
(arrhythmias) such as atrial fibrillation are commonly encountered in clinical prac-
tice, occurring in as many as 4% of the population over the age of 60, increasing 
with age to almost 9% in octogenarians [9]. Early symptoms of atrial fibrillation in-
clude fatigue and palpitations, and often lead to the patient seeking medical advice. 
Electrocardiography (ECG) is eventually performed along with other investiga-
tions, and as soon as the diagnosis is made treatment is begun to try and prevent the 
longer-term complications of tachycardia (rapid heart rate), mediated cardiomyopa-
thy (resulting in heart failure) and stroke.  
 To prevent stroke, the patient is often placed on anticoagulant (blood thinning) 
medication placing them at risk of potential bleeding complications from this ther-
apy. All of this results in a two-fold increase in mortality in this elderly patient 
group, independently of other risk factors [10]. Apart from early detection of this 
condition using ECG so that prompt treatment can be initiated, regular monitoring 
is required to ensure control of the heart rate, which results in prevention of much 
of the associated morbidity and mortality.  
 BSNs offer the chance to diagnose cardiac arrhythmias earlier than ever in “at 
risk” groups such as the elderly, as well as the ability to monitor disease progres-
sion and patient response to any treatment initiated. 

High blood pressure (hypertension) is another cardiovascular disease thought to 
affect approximately 50 million individuals in the United States alone [11]. The di-
agnosis of this disease is often made in an otherwise asymptomatic patient who has 
presented to their doctor for other reasons. This condition can, if untreated, result in 
end-organ failure and significant morbidity; ranging from visual impairment to 
coronary artery disease, heart failure, and stroke. Heart failure in turn affects nearly 
five million people every year in the United States, and is a contributory factor in 
approximately 300,000 deaths each year [12]. Early diagnosis of high blood pres-
sure is important for both controlling risk factors such as smoking and high choles-
terol, but also for early initiation of antihypertensive treatment. The diagnosis is 
confirmed using serial blood pressure measurements, and once treatment is com-
menced this is titrated to the required effect by monitoring the patient’s blood pres-
sure over a period of weeks or months. Once a patient has been diagnosed with hy-
pertension, they require regular blood pressure monitoring to ensure adequacy of 
therapy. Indeed over a patient’s life, the pharmacotherapy they receive may be al-
tered many times. One can imagine how labour-intensive blood pressure monitoring 
in these patients can be, often requiring several visits to clinics. Although home 
blood pressure testing kits have been made available, the limitations of these de-
vices are their dependence on the operator and patient motivation. Recently, a new 
category termed “prehypertension” has been identified and may lead to even earlier 
initiation of treatment [13]. BSNs would allow doctors to monitor patients with 
seemingly high blood pressure during their normal daily lives, correlating this to 
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their other physiology in order to better understand not only the disease process but 
also to decide what therapy to start the patient on, and to monitor their response to 
this therapy. 

Diabetes mellitus is a well-known chronic progressive disease resulting in sev-
eral end-organ complications. It is a significant independent risk factor for hyper-
tension, peripheral vascular, coronary artery, and renal disease amongst others. In 
the United States, the prevalence of diabetes mellitus has increased dramatically 
over the past four decades, mainly due to the increase in prevalence of obesity [14]. 
It is estimated that annually 24,000 cases of diabetes induced blindness are diag-
nosed, and 56,000 limbs are lost from peripheral vascular disease in the United 
States alone. The diagnosis is often made from measuring fasting blood glucose 
(which is abnormally raised) either during a routine clinical consultation, or as a re-
sult of complications of the condition. Once such acute complication is diabetic 
keto-acidosis which can be life threatening, and can occur not only in newly diag-
nosed diabetics, but also in those with poor blood sugar control due to reduce com-
pliance with medication [15]. Once diagnosed, these patients require the regular 
administration of insulin at several times during the day, with blood glucose “pin-
prick” testing used to closely monitor patients’ blood sugar in between these injec-
tions. This need for repeated drawing of blood is invasive and therefore undesirable 
for many patients, yet there is at present no clear reliable alternative. As previously 
mentioned, variable treatment compliance rates (60-80% at best) in these patients 
are made worse the fact that they are on multiple medications [16]. BSN technology 
used in the monitoring of this group would allow the networking of wireless im-
plantable and attachable glucose sensors not only to monitor patient glucose levels 
but also to be used in “closed feedback loop” systems for drug (insulin) delivery, as 
described later on in this chapter.  

Although the three chronic conditions mentioned above illustrate the need for 
continuous physiological and biochemical monitoring, there other examples of dis-
ease processes that would also benefit from such monitoring. Table 1.2 lists some 
of these processes and the parameters that may be used to monitor them. 

1.2.2 Monitoring Hospital Patients 

In addition to monitoring patients with chronic diseases, there are two other specific 
areas where BSN applications offer benefit. The first of these is the hospital setting, 
where a large number of patients with various acute conditions are treated every 
year. At present, patients in hospital receive monitoring of various levels of inten-
sity ranging from intermittent (four to six times a day in the case of those suffering 
with stable conditions), to intensive (every hour), and finally to continuous invasive 
and non-invasive monitoring such as that seen in the intensive care unit. This moni-
toring is normally in the form of vital signs measurement (blood pressure, heart 
rate, ECG, respiratory rate, and temperature), visual appearance (assessing their 
level of consciousness) and verbal response (asking them how much pain they are 
in).  
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Patients undergoing surgery are a special group whose level of monitoring 
ranges from very high during and immediately after operation (under general anaes-
thesia), to intermittent during the post-operative recovery period. Aside from being 
restrictive and “wired”, hospital ward-based patient vital signs monitoring systems 
tend to be very labour intensive, requiring manual measurement and documenta-
tion, and are prone to human error. Automation of this process along with the abil-
ity to pervasively monitor patients wherever they are in the hospital (not just at their 
bedside), is desirable not only to the healthcare provider, but also to the patient. In 
the post-operative setting, the use of implantable micro-machined wireless sensors 
to monitor the site of the operation has already begun, with a sensor being used to 
monitor pressure in the aneurysm sac following endovascular stenting [17]. The 
next step for any “hospital of the future” would be to adopt a ubiquitous and perva-
sive in-patient monitoring system enabling carers to predict, diagnose, and react to 
adverse events earlier than ever before. Furthermore, in order to improve the effi-
ciency of hospital systems, the movements of patients through its wards, clinics, 
emergency departments and operating theatres may be tracked to try and understand 
where workflow is being disrupted and may be streamlined. This would help, for 
example, to maintain optimal capacity to cater for elective (planned) admissions 
whilst having the ability to admit patients with acute illnesses. 

1.2.3 Monitoring Elderly Patients 

The second scenario where BSNs may prove invaluable is for the regular and non-
intrusive monitoring of “at risk” population groups such as the elderly. With people 
in industrialised nations living longer than ever before and an increase in average 
life expectancy of more than 25 years, the size of this group is set to increase, along 
with its potential demand upon healthcare resources [18].  
 Identifying ways of monitoring this aging population in their home environment 
is therefore very important, with one key example of the usefulness of this approach 
being the vulnerable periods during months of non-temperate weather. There is evi-
dence to suggest that at times of the year when weather conditions are at their ex-
tremes (either very cold or very hot), elderly patients are at increased risk of requir-
ing hospital admission [19, 20]. They are at risk because they are not able to seek 
medical help early enough for simple and treatable conditions, which eventually 
may lead to significant morbidity. An example of this is an elderly individual who 
lives alone and acquires a chest infection, which he fails to identify and seek help 
for until the infection requires hospital admission, or even ventilatory support. This 
could all be potentially avoided if the infection, or change in patient habits as a re-
sult of this infection, was picked up early and antibiotic therapy initiated.  
 Examples illustrating how people behave differently at the onset of illnesses in-
clude a decrease in appetite, a reduction in movement, and propensity to stay in-
doors. When correlated with physiological vital signs measurement, this system has 
the potential to clearly identify those most at risk. It is also demonstrates an in-
stance in which a WSN (set up in the patient’s home) and a BSN (on the patient’s 
body) may overlap in their applications. It may be, therefore, that monitoring eld-
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erly patients in their home environment during non-temperate weather will allow 
earlier detection of any deterioration in their condition, for which prompt treatment 
may reduce the need for hospital admission, associated morbidity and even mortal-
ity.
 The concept of an unobtrusive “home sensor network” to monitor an elderly 
person’s social health (giving feedback not only to that person’s carers and family 
members, but also to the elderly individual themselves) is one that is being devel-
oped by several companies such as Intel [21]. Whilst such a sensor network at-
tempts to monitor well-being by identifying the individual and the level of activity 
they are undertaking, it is easy to see how this network could communicate with a 
body sensor network relaying physiological data about the individual. Combining 
these two networks would allow for a much better appreciation of the context in 
which the sensing is taking place. 

1.3 Pervasive Patient Monitoring 

In most healthcare systems spiralling costs, inadequate staffing, medical errors, and 
an inability to get to hospital in time in rural areas is placing a tremendous burden 
on the provision of care. The concept of “ubiquitous” and “pervasive” human well-
being monitoring with regards to physical, physiological, and biochemical parame-
ters in any environment and without restriction of activity [22, 23] has only recently 
become a reality with the important advances in sensor, miniaturised processor, and 
wireless data transmission technologies described earlier [24, 25]. Whilst external 
(attachable) sensors, such as those for measuring vital signs, have continued to im-
prove, it is the area of implantable sensors and more recently biosensors that has 
generated the greatest interest [26, 27].  
 Advances in key areas such as power supply miniaturisation, increased battery 
duration, reduced energy consumption, and power scavenging are eagerly awaited 
and will be essential to systems that undertake pervasive monitoring, particularly in 
regard to implantable sensors [28]. Micro Electro-Mechanical System (MEMS) 
technology is another area which has offered the prospect of sophisticated sensing 
using a miniaturised sensor device [29]. Pervasive healthcare systems utilising large 
scale BSN and WSN technology will allow access to accurate medical information 
at any time and place, ultimately improving the quality of the service provided. 

With these important advances taking place, clinicians are for the first time able 
to explore the prospect of not only monitoring patients more closely, but also to do 
this in an environment where they have never been able to monitor patients before. 
The chronic conditions of diabetes mellitus and hypertension mentioned previously 
in this chapter are currently managed on the basis of a series of “snapshots” of in-
formation, obtained in a clinical setting which is artificial in comparison to the pa-
tient’s normal environment.  

The long-term management of these conditions would clearly benefit from any 
technology which could result in a more tailored treatment being offered to the pa-
tient. The treatment of atrial fibrillation, which is associated with episodic rather 
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than continuous circulatory abnormalities such as blood pressure surges, paroxys-
mal arrhythmias or episodes of myocardial ischaemia best illustrates this, as at pre-
sent much time is wasted in trying to “capture an episode” of these abnormalities. 
As all of these episodes could be picked up using basic vital signs monitoring but 
their timing cannot be predicted, a wireless, pervasive, and continuous monitoring 
system is ideally suited to diagnosing and monitoring the progress of these diseases.  

Additionally, better and earlier detection is likely to result in earlier administra-
tion of the appropriate treatment, and the prevention of disease-related morbidity. In 
the more acute hospital setting, the ability to continuously capture data on patient 
well-being has the potential to facilitate earlier adverse event detection and ulti-
mately treatment. In such a system, the patient would not be required to stay at their 
bedside for monitoring to take place, increasing their mobility and return to activity 
in the hospital. In addition to this, a patient’s physiological data would be obtained 
either continuously or at shorter time intervals, picking up said deterioration more 
quickly. At present, much of the data captured even with the aid of continuous pa-
tient monitoring is lost, but in conjunction with an automated pervasive monitoring 
system all data gathered could be stored for later review and trend analysis. 

In order to achieve pervasive monitoring, several research platforms have 
emerged. The first of these utilises external sensors wearable in clothing, either 
through integrating them with a textile platform (European Commission “Wealthy” 
project) [30], or by embedding them into clothes with integrated electronics result-
ing in “intelligent biomedical clothes” (European Commission “MyHeart” Pro-
ject[1]). The “MIThril” project based at Massachusetts Institute of Technology Me-
dia Lab has been developing a body-worn sensing computation and networking 
system, integrated in a “tunic” [1]. Proposed wearable applications include “mem-
ory glasses” that aim to provide a context-aware memory aid to the wearer.  

Targeted to a population of patients with cardiac disease, “CardioNet” is a mo-
bile outpatient telemetry system consisting of a three-lead electrocardiogram con-
nected to a Personal Digital Assistant (PDA)-sized processing, display and power 
unit that aims to provide continuous real-time ECG monitoring, analysis and re-
sponse for patients with suspected heart rhythm disturbances in their home, work or 
travelling environment [31]. Aimed at a similar population, Cardionetics is a com-
pany that provides an ambulatory ECG monitor (C.Net2000) designed for use by 
primary care providers, which analyses and classifies cardiac arrhythmias and mor-
phology changes [32]. Finally the “Code Blue” project based at Harvard University 
has developed a medical sensor network using pulse oximeter, ECG, and motion 
activity sensor motes based on MicaZ and Telos designs [33]. Figure 1.3 shows 
some of the devices assembled through the research platforms mentioned in this 
chapter.  

All these strategies share a common aim in providing unobtrusive, pervasive 
human monitoring irrespective of geographical location. In the case of external sen-
sors, whilst embedding these into a garment does provide a more convenient wear-
able system, it lacks flexibility for the addition and relocation of sensors as dictated 
by patient size and shape. With implantable sensors, wiring is impractical and to a 
large extent can limit sensor placement. A wireless platform specifically designed 
to network external and implantable sensors on the human body is desirable not 
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only because it allows these various sensors to be networked in a less bulky and in-
trusive way, but also because it allows the potential to add and remove sensors as 
required. Wireless sensor networking, data acquisition, data capture, and low power 
transmission all offer the prospect of flexible body sensor networks that are truly 
pervasive.  

Figure 1.3 (Top left) EC “Wealthy” project sensors embedded in clothing 
(courtesy of Rita Paradisao, Smartex Italy). (Top right) “MIThril” tunic 
(courtesy of Professor Alex Pentland, MIT Media Laboratory). (Bottom) 
Cardionetics CTS2000 (reprinted with permission from Cardionetics Ltd., 
UK).

The development of implantable sensors offers BSN one of its most exciting 
components. The European Commission project “Healthy Aims” has been focused 
on specific sensor applications, namely for hearing aids (cochlear implant), vision 
aids (retinal implant), detecting raised orbital pressure (glaucoma sensor), and in-
tracranial pressure sensing (implantable pressure sensor) [1]. Other implantable de-
vices include Medtronic's “Reveal Insertable Loop Recorder”, which is a fully im-
plantable cardiac monitor used to record the heart's rate and rhythm during 
instances of unexplained fainting, dizziness, or palpitations. The device provides 
the clinician with an ECG that can be used to identify or rule out an abnormal heart 
rhythm as the cause of these symptoms [32]. CardioMEMS is a company that pro-
duces an implantable pressure sensor, which has been developed at Georgia Insti-
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tute of Technology, that can take pressure readings following implantation into an 
aneurism sac at the time of endovascular repair [17]. This implanted sensor then 
provides a means of monitoring the status of the repair during the years following. 
Finally, Given Technologies has developed an endoscopy capsule that transmits 
images of the small bowel as it travels through the gastrointestinal tract [34]. Figure 
1.4 below shows some of the implantable body cavity sensing technologies that 
may ultimately form part of an implantable wireless BSN. 

Figure 1.4 (Left) The CardioMEMS Endosure wireless aneurism pressure- sensing 
device (courtesy of CardioMEMS Inc. and Professor Mark Allen, Georgia Institute of 
Technology). (Right) Medtronic “Reveal Insertable Loop Recorder” (courtesy of 
Medtronic Inc.). (See colour insert.)

1.4 Technical Challenges Facing BSN 

Although the BSN platform aims to provide the ideal wireless setting for the net-
working of human body sensors and the setting up of pervasive health monitoring 
systems, there are a number of technical challenges that lie ahead. These include the 
need for better sensor design, MEMS integration, biocompatibility, power source 
miniaturisation, low power wireless transmission, context awareness, secure data 
transfer, and integration with therapeutic systems, each of which are mentioned 
briefly below, and covered in more detail throughout this book. 

1.4.1 Improved Sensor Design 

Advances in biological, chemical, electrical, and mechanical sensor technologies 
have led to a host of new sensors becoming available for wearable and implantable 
use. Although the scope of these sensors is very wide, the following examples high-
light the potential they offer to pervasive patient monitoring. In the case of patients 
with diabetes mellitus, trials of implantable glucose sensors are underway in an at-
tempt to rid this patient population of the need for regular invasive blood glucose 
pinprick testing [35]. In addition, the ability to determine tissue and blood glucose 
levels using an implantable wireless glucose sensor may also form the sensing part 
of a “closed feedback loop” system. The other half of this loop would consist of a 
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drug delivery pump which would continuously infuse a variable amount of fast-
acting insulin based upon the patient’s glucose level [36]. This concept effectively 
results in the closed feedback loop system acting as an “artificial pancreas”, which 
maintains blood glucose within a closely defined reference range. As a result, dia-
betics may be able to avoid not only the complications of an acutely uncontrolled 
blood sugar (hypo- or hyper-glycaemia), but also much of the end-organ damage 
associated with the condition (retinopathy, cardiac, renal, and peripheral vascular 
disease).
 Reliability is a very important requirement for sensors in closed feedback loop 
systems such as this, because they ultimately guide treatment delivery. It may be 
therefore that in this case an implantable biosensor array offers a more accurate re-
sult than one isolated sensor [37]. 

Improvements in sensor manufacturing and nano-engineering techniques, along 
with parallel advances in MEMS technology offer the potential for producing even 
smaller implantable and attachable sensors than were previously possible. An ex-
ample of one such miniaturised nano-engineered sensor currently under develop-
ment is a fluorescent hydrogel alginate microsphere optical glucose sensor [38]. 
Physiological sensors benefiting from MEMS technology integration include the 
microneedle array and the implantable blood pressure sensor [39]. Although much 
of this technology is still experimental, it is not inconceivable that over the next 
decade these sensors will guide therapy for chronic conditions such as hypertension 
and congestive cardiac failure. MEMS devices in particular may prove pivotal in 
the drug delivery component of any closed feedback loop [40]. In addition, when 
mass-produced, MEMS technology offers the prospect of delivering efficient and 
precise sensors for no more than a few dollars. This is well illustrated in the case of 
accelerometers, which have been used by the automobile industry to efficiently and 
reliably trigger car airbag releases during simulated accidents. 

1.4.2 Biocompatibility 

Implantable sensors and stimulators have had to overcome the problems of long-
term stability and biocompatibility, with perhaps one of the most successful exam-
ples of this being the cardiac pacemaker and the Implantable Cardioverter-
Defibrillator (ICD) [41]. The scale of implantable ICD use is best demonstrated by 
the fact that in 2001, a total of 26,151 were implanted at 171 centres in the UK and 
Ireland [42]. One of the main indications for an ICD is sudden cardiac death, which 
affects approximately 100,000 people annually in the UK, demonstrating the size of 
the patient population that may benefit from this device [43]. Other implantable de-
vices currently used in clinical practice include implantable drug delivery systems 
for chronic pain [44], sacral nerve stimulators for anal incontinence[45], and high 
frequency brain (thalamic) stimulation for neurological conditions such as Parkin-
son’s disease [46] and refractory epilepsy [47]. Figure 1.5 shows a range of these 
implantable devices currently in clinical use. 

The fact that large groups of the patients already carry implanted devices such 
as those mentioned above, means that many of the lessons learnt from their use can 
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be extended to any proposed implantable biosensor research. In addition to this, the 
integration of these already implanted sensors and effectors into a larger wireless 
BSN is something that deserves consideration. With regards to this last statement, 
power consumption is obviously an important issue, and until this is addressed it is 
unlikely that, for example, pacemakers would be used to monitor the cardiovascular 
status as part of a body sensor network. Interference of these devices with each 
other, as well as with day-to-day technologies used by patients such as mobile 
phones, is a concern that has been noted and must be addressed [48]. The concern 
here is that interference may result in not only sensor malfunction, but also might 
affect implanted drug delivery systems and stimulators. This supports the call for a 
new industrial standard for the wireless transmission frequency used in body sensor 
networks. 

Figure 1.5 (Left) An example of an implantable device (sacral nerve stimula-
tor) in current clinical use. (Bottom right) Deep brain stimulators, (courtesy
of the Radiological Society of North America). (Above right) Implantable 
Synchromed® II drug delivery system for chronic pain (courtesy of Med-
tronic Inc.). 

1.4.3 Energy Supply and Demand 

One of the key considerations for BSNs is power consumption. This is because 
power consumption determines not only the size of the battery required but also the 
length of time that the sensors can be left in situ. The size of battery used to store 
the required energy is in most cases the largest single contributor to the size of the 
sensor apparatus in term of both dimensions and weight. These factors are impor-
tant not only in the implantable but also the external sensor settings because they 
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determine how “hidden” and “pervasive” the sensors are. Several strategies have 
been employed to achieve this miniaturisation of the power source. One such strat-
egy is the development of micro-fuel cells that could be used in the case of implant-
able sensors, reducing the size of the power supply whilst increasing the lifetime of 
the battery and therefore the sensor. Characteristics that render fuel cells highly at-
tractive for portable power generation include their high energy efficiency and den-
sity, combined with the ability to rapidly refuel [49, 50]. Polymer-electrolyte direct 
methanol [51] and solid-oxide fuel cells [52] are examples of two such technologies 
that have been suggested as alternatives to Lithium ion batteries in portable settings. 

 An alternative approach is to use biocatalytic fuel cells consisting of immobi-
lised micro organisms or enzymes acting as catalysts, with glucose as a fuel to pro-
duce electricity [53]. This concept of an “enzymatic microbattery” is attractive be-
cause it offers the prospect of dramatically reducing the size of the sensor apparatus 
and is ideally suited to implantable devices to the point that it has even been sug-
gested as a power supply for a proposed “microsurgery robot” [53]. Miniaturising 
the packaging required to hold a battery’s chemical constituents, which currently 
consists of strong metals such as steel because the battery houses highly corrosive 
chemicals, is also important. Replacing these chemicals with a substance that is 
much less corrosive (for example oxygen and water) would therefore require less 
bulky packaging [54]. Another interesting strategy is the use of acoustic (ultra-
sound) power transmission into an implantable device, with piezoelectric discs as 
power transducers [55]. Challenges faced in this case include increasing power 
storage capability as well as controlling the acoustic beam to achieve maximal effi-
ciency.

 Finally, reducing battery consumption through the increased use of power scav-
enging from on-body sources such as vibration and temperature is a strategy being 
developed to enhance battery life; especially in the case of implantable sensors [56, 
57]. At present, a large proportion of the electrical power consumed by biosensors 
goes towards the measurement circuit. In a wireless BSN system, the wireless 
communication link is likely to be the greatest consumer of power. The develop-
ment of low-power wireless data paths is therefore key to the successful develop-
ment of wireless BSN systems. Reducing the power consumption of the radio trans-
ceiver is crucial to the practical deployment of BSNs [58, 59]. Ultra wideband radio 
has also been suggested as a mode of short-range wireless communication with 
relatively high data rates and low power consumption [60]. Self-configuring net-
works carry the advantage of reducing energy consumption from unnecessary nodes 
classified as “redundant”, thereby increasing the system’s lifespan. 

1.4.4 System Security and Reliability 

Figure 1.6 is a historic photograph showing mass crowding in the healthcare envi-
ronment. Although this is not representative of the clinical setting in modern hospi-
tals, it highlights the importance of secure and reliable data transfer for BSNs. Se-
curity and reliability of the network are two of the crucial elements of the BSN 
design, as sensitive patient information is being transmitted through the wireless 
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network. Unlike typical wired or wireless network architectures in which the net-
work configuration is mostly static and there is limited constraint on resources, the 
architecture for BSN is highly dynamic, placing more rigorous constraints on power 
supply, communication bandwidth, storage and computational resources.  

Figure 1.6 A picture from the 1918 influenza epidemic is an extreme exam-
ple of the number of hospital patients that can be present close proximity 
(courtesy of the National Museum of Health and Medicine, Armed Forces In-
stitute of Pathology, Washington, D.C., NCP 1603).

In terms of security, BSN data must be secured with strong cryptography to pro-
tect the patient’s privacy. However, strong cryptography requires extensive compu-
tation and resources. Considering the limited resources that a BSN node can have, a 
compromised approach has to be taken to maximise security whilst minimising re-
source utilisation. Furthermore, the highly dynamic nature of the BSN means that 
typically static network authentication methods will not be applicable. Even meth-
ods proposed for ad hoc networks such as the asymmetric cryptography technique 
would be computationally too expensive for BSN applications [61]. As such, a ro-
bust, efficient and lightweight security infrastructure is required for the practical 
deployment of BSN applications. 

The reliability of the network, on the other hand, directly affects the quality of 
patient monitoring, and in a worst-case scenario, it can be fatal when a life threaten-
ing event has gone undetected. However, due to the constraints on communication 
bandwidth and power consumption, traditional network reliability techniques such 
as the retransmission mechanism for TCP protocol, may not be practical for BSN 
applications. With the similar constraints on WSNs, researchers have proposed sev-
eral methods for improving its reliability. One simple approach is to use limited re-
transmission where packets are retransmitted for a fixed number of times until the 
reception of the acknowledgement; however, retransmission often induces signifi-
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cant overhead to the network. Another approach is to form a multi-path network 
and exploit the multiple routes to avoid disrupted links [62]. It is expected that this 
will be an area that will attract significant research interest in the coming years, par-
ticularly in exploring the autonomic sensing paradigm for developing self-
protecting, self-healing, self-optimising, and self-configuring BSNs. 

Thus far, most security and network reliability techniques aim to provide maxi-
mum security and reliability for generic wireless sensor network applications. 
However, in the case of BSN, instead of relying solely on the low level network in-
frastructure, high level context information can also be used to reinforce the secu-
rity and reliability of the system. An example of this is the use of biometric infor-
mation for enhancing the inherent security of the network [63]. Furthermore, as 
multiple sensors are often used in a BSN application to measure or infer the same 
physiological parameters, the use of intelligent multi-sensor data fusion techniques 
can significantly enhance the reliability of the system. 

Other implications of deploying BSNs include the appreciation of the long-term 
consequences of their effect on the body, particularly in the case of implantable 
sensors. This is likely to govern the materials and manufacturing process used to 
construct BSN nodes, their battery supply, and the type of wireless data transfer 
used. In the case of WSN, where the effect of large numbers of redundant energy-
depleted nodes is likely to be detrimental on the environment [2], these nodes must 
be re-usable or in some way biodegradable. For BSN, both biodegradability and in-
ertness of materials offer potential solutions, but finding the right material for 
manufacturing the nodes is likely to pose an important challenge.  

1.4.5 Context Awareness 

In addition to being able to monitor physiological parameters, research on BSNs 
has identified the importance of the context (environment) the person being moni-
tored is in when interpreting these parameters. Simple activities such as “sleeping” 
and “walking” have an effect on not only vital signs such as heart rate and blood 
pressure, but also on any measure of activity and mobility that is being used. This 
“context awareness” can also help account for motion artefacts and errors detected 
by the sensors. Under normal conditions, visual monitoring provides this contextual 
information most effectively, but in the pervasive healthcare monitoring setting this 
is not possible. It is therefore important to identify methods of “inferring” context 
using techniques such as “Naïve Bayesian” classifiers [64] and “hierarchical hidden 
semi-Markov models”[65] for activity recognition and tracking daily activities. Fu-
sion of data from multiple sensors may provide this contextual information, with se-
lected classifiers designed to yield optimal results based on fusing all sensor read-
ings. 

Several types of sensors have been used to develop this context awareness. Ac-
celerometers have been suggested as appropriate candidates for determining activity 
state (driving, sleeping, exercising) and posture (lying, sitting, standing), although 
the technical challenge of sensor placement in order to achieve the ideal result is 
one that is still being addressed [7, 66]. Audio sensors that act by determining either 
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the level of environmental noise, or whether the subject is talking to anyone or not, 
have also showed potential [67]. Changes in temperature and heat flux may be able 
to not only determine whether the subject is active or at rest, but also when the sub-
ject moves from a warmer indoor to a colder outdoor environment [7]. Skin con-
ductance (affected by sweat gland activity) may be measured using galvanic skin 
response, with an electrode in contact with the skin surface [68]. Integration of sev-
eral of these context-sensing modalities is a strategy used by SenseWearTM (Body-
Media Inc.), who have produced a device consisting of a multi-sensor array that is 
worn on the upper arm and includes a two-axis accelerometer, heat flux sensor, gal-
vanic skin response sensor, skin temperature sensor, and near-body ambient sensor 
[68]. Researchers at MIT has developed a modified ring sensor that uses pho-
toplethysmography to detect a person’s pulse rate and blood-oxidation level [69]. 
They have built “context awareness” into this ring using photocells to detect ambi-
ent light, thermistors to detect temperature, and accelerometers to detect motion, all 
of which may interfere with readings and must therefore be accounted for.  

1.4.6 Integrated Therapeutic Systems 

Integrating sensors and therapeutic systems and thereby “closing the feedback 
loop”, is likely to play a major part in defining the role for BSN in clinical practice 
[70]. This is particularly well illustrated in the delivery of pharmacotherapy where 
currently drugs are administered at doses and frequencies that are based on average 
sizes, and metabolic rate. When considering the fact that for an individual patient 
who has an individual size and metabolism, this optimal dosage is likely to vary 
considerably from the “average”, it is clear that individualised dosing is preferable. 
In addition to this, a patient’s drug requirement may temporarily change during an 
illness, or for example when they are on other medications such as antibiotics. 
Whilst underdosing in these situations will result in inadequate treatment (for ex-
ample seizures in patients on anti-epileptic medication), overdosing will result in an 
increased risk of the patient suffering unwanted side-effects. Drug-delivering medi-
cal feedback loops consist of miniaturised sensors that continuously monitor a 
drug’s effect and through medical control algorithms, adjust its delivery from 
miniaturised drug pumps. The dosage of the drug would therefore be individualised 
to the patient. 

An example of integrated drug-delivering therapeutic systems for fast-acting in-
sulin in diabetics is shown in Figure 1.7 [70]. This proposed system consists of two 
patches on the skin. One is an implanted sensor-amplifier-transmitter which may be 
replaced by the user every few days. The other patch would be an insulin-delivering 
system comprising of a calibrator, Radio Frequency (RF) receiver, drug reservoir, 
pump, battery, and miniature subcutaneously inserted drug inlet. The RF signal 
from the “sensor” patch would be received by the “insulin delivery” patch and 
translated through a medical algorithm, to a series of micro-doses of insulin. Like 
the “sensing” patch, the “insulin delivery” patch would also be replaced by the user 
every few days. 
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The other disease processes (some of which have been mentioned earlier in this 
chapter) that would benefit from a similar integrated drug delivery process include 
epilepsy, hypertension, ischemic heart disease, and conditions requiring blood anti-
coagulation. All these disease processes currently require “average dosing” and 
their efficacy is currently monitored by measuring the drug level in the patient’s 
blood, or in the case of hypertensives, their blood pressure when attending their 
health clinic. It is important to remember that drug delivery may not be the only 
stimulus that is delivered by such integrated feedback systems, with electrical stim-
uli, for example to brain, nerves, and muscle being other important examples. 
Whatever the application, it is clear that the pace at which these integrated feedback 
systems develop is dependent largely on the development of suitable components 
and medical control algorithms to construct the miniature subsystems. 

Figure 1.7 (Left) An integrated insulin drug-delivery system consisting of 
two communicating skin patches, one monitoring blood subcutaneous glu-
cose, and the other delivering insulin (courtesy of Professor Adam Heller and 
John Wiley & Sons Inc.).

1.5 Personalised Healthcare 

In a population consisting of several vulnerable groups such as those with chronic 
disease and the elderly, the need for effective individualised health monitoring and 
delivery has resulted in the concept of “personalised healthcare”. Such a system is 
expected to be ‘dynamic’ and customised to specifically address the health needs of 
individuals. In essence, personalised healthcare systems should take into account an 
individual’s chronic (long term) and episodic (short term) healthcare needs, and 
have clear healthcare objectives. They should also account for the cognitive level of 
the patient, and for both social and community factors. BSNs offer perhaps the 
greatest chance of developing a personalised healthcare system where treatment 
may be tailored to the patient at several levels. 
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At the monitoring level, this system would have to reliably observe the patient’s 
physiology, activity, and context, detecting adverse changes in their wellbeing 
early. At the delivery of care level, data processing and decision-making algorithms 
must prompt the appropriate action to deliver correct therapy. Drug delivery, which 
as previously mentioned is at present dosed according to population averages, could 
be tailored exactly to an individual’s needs, perhaps by infusion rather than by tab-
let. The cost-effectiveness of such a personalised healthcare system over existing 
technology solutions is also important and is likely to drive its development. New 
bionic technologies such as neuromodulation and neurostimulation devices are 
likely to enable BSNs to interact with and control a patient’s physiological systems 
themselves. Ultimately, these devices could use information from BSN sensors to 
control the human body’s musculoskeletal system itself. Perhaps one of the most 
successful examples of a bionic device in clinical use is the cochlear implant, which 
has had tremendous impact on patients’ lives [71]. 

At the research level, pervasive healthcare systems will allow doctors to learn 
much more about the disease processes they commonly see in clinical practice. Fi-
nally at the information delivery level, giving the patient personalised information 
(according to their healthcare needs) is likely to help them understand and self-
manage their conditions more appropriately [72]. The ultimate aim of all this is the 
early detection of disease leading to an early intervention, both of which are attrib-
utes that may make personalised healthcare-based treatment the next best thing after 
prevention itself. 

In order to deliver truly personalised healthcare, BSN sensors have to become 
invisible to the patient, thereby avoiding activity restriction or behaviour modifica-
tion. Whilst sensor miniaturisation and implantability are potential solutions to this, 
another option being explored is the integration of the sensor into non-clothing 
items that patients already wear. The ring sensor developed at MIT, for example, 
can act as an ambulatory telemetric continuous health monitoring device [69]. This 
wearable biosensor uses advanced photoplethysmographic techniques to acquire 
data on the patient’s heart rate, heart rate variability and oxygen saturation. This 
ring sensor contains an optical sensor unit, an RF transmitter, and a battery, con-
nected to a microcomputer in the ring itself. This ensures onsite low-level signal 
processing, data acquisition, filtering, and bidirectional RF communication with a 
cellular phone which can access a website for data acquisition and clinical diagno-
sis.

There are, of course, other areas aside from clinical practice where wireless 
BSN surveillance may be useful in monitoring people and their activity. Profes-
sional groups such as fire-fighters and paramedics, who commonly face hazardous 
situations, as well as policemen and soldiers, may all be monitored with such a sys-
tem. Fitsense is a company that has developed a system known as “The Body-
LAN™”. This uses low power wireless body monitoring sensors for a variety of 
physiological and environmental parameters, which via a proprietary wireless per-
sonal area network collect and send data to its users.  They can then assess their fit-
ness and performance [73]. Figure 1.8 shows some of these monitoring systems. 

One of the challenges of a personalised healthcare system is the wealth of in-
formation that the system is going to generate for the healthcare provider above and 
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beyond what is currently available. How this information will be accumulated, 
stored, and interpreted, and how healthcare systems will respond to adverse events 
are all questions to be considered. It is important to appreciate that at present whilst 
much patient information is collected by continuous monitoring, for example during 
hospital admission, most of this information is lost. Although personalised perva-
sive healthcare systems will collect a vast amount of information, separating this 
into “important” and “non-important” is going to require very accurate context 
sensing. Mining this data and representing it to a user is yet another challenge. Fi-
nally, as previously mentioned, reacting to this information is going to require ma-
jor process automation and structural change to existing healthcare systems. 

Figure 1.8 (Left) the first prototype ring sensor with RF transmitter powered 
by a coin-sized battery (courtesy of Professor Harry Asada, MIT). (Right) a 
FitSense sensor attached to an athlete’s shin enabling measurement of stride 
length, step rate, instantaneous speed, distance, and acceleration (courtesy of 
Tom Blackadar, FitSense Inc.).

1.6 Finding the Ideal Architecture for BSN 

The human body houses what is perhaps the most sophisticated and well developed 
example of a network of body sensors in existence. Innervated by small neurones, 
the Autonomic Nervous System (ANS) comprises of autonomic ganglia and nerves. 
Also known as the involuntary nervous system, it is concerned primarily with the 
control of the body’s internal environment. It is ironic that in developing a wireless 
body sensor network to monitor a person’s physiological state, we are in essence 
trying to monitor and act on the reactions of the body’s own nerves, sensors, and ef-
fectors, to both external and internal environments. Looking towards this advanced 
sensor network is likely to set the standard for what BSN aims to achieve. The 
complexity of the human nervous system and its components is clearly much 
greater than that of any proposed pervasive BSN for patient monitoring. When 
looking for ideas and solutions to the problems faced by BSN however, the human 
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body may itself hold the key. In order to understand the way in which the auto-
nomic nervous system fulfils the requirement of the ideal body sensor network, we 
must understand how it overcomes each of the technical challenges mentioned pre-
viously in this chapter. We may then be able to translate some of these lessons into 
design concepts for a truly pervasive patient monitoring system, and look to the 
challenge of developing feedback loop between wireless sensors as well as effec-
tors. Before doing this, it is important to understand the basic anatomical and func-
tional components that form the ANS. 

The ANS controls the human body’s internal environment through innervation 
of the nonskeletal muscle of the heart, blood vessels, bronchial tree, gut, pupils, and 
secretomotor supply of many glands, namely those in the gastrointestinal tract, its 
embryological outgrowths, sweat glands, and the adrenal medulla [74]. The higher 
centres of this system are located in the brain and spinal chord, with peripheral 
nerve fibres connecting these to both sensor and effector organs. Functionally the 
ANS can be divided into two groups. The sympathetic nervous system is concerned 
primarily with stress reactions of the body and when stimulated results in what is 
commonly termed as the “fight or flight” response. The effect of stimulation of the 
sympathetic nervous system can in essence be related to a preparation for a stressful 
situation such as battle. In the eyes, pupils dilate allowing more light onto the retina 
at the back of the orbit thereby enhancing vision. Peripheral blood vessels constrict 
resulting in a reduction of heat loss from the skin and a diversion of blood to vital 
organs. The force of contraction of the heart, along with its rate and oxygen con-
sumption increases, also in an attempt to maintain a good blood pressure and perfu-
sion to vital organs. The diameter of airways in the lung is increased, allowing more 
oxygen into the lungs and thereby allowing for better oxygenation of blood. The 
motility and contraction of bowel normally required to digest food is inhibited, and 
the tone of sphincters increased, slowing the transit of faeces through the alimentary 
system. In a similar way, bladder contraction is inhibited, and the sphincter control-
ling the flow of urine out of the bladder stimulated to contract. Blood glucose levels 
are increased by inhibition of insulin release and increased breakdown of liver gly-
cogen stores into glucose, providing fuel for the increased activity with the body. 
The adrenal gland is stimulated to secrete hormones such as epinephrine, further 
stimulating the increased cardiac output. Finally there is an increase in the produc-
tion of sweat along with an elevation of hairs on the surface of the body. Together 
all these complex actions prepare the human body for “fight or flight” action.  

The opposite of this occurs with stimulation of the parasympathetic system, with 
for example a reduction in heart rate, conduction, and excitability accompanied by a 
reduction in pupil size. There is also an increase in gut and bladder motility with 
sphincter relaxation, resulting in a quicker transit of faeces and urine that with sym-
pathetic stimulation. Although the actions of both systems seem antagonistic, it is 
important to appreciate that both do work in synergy, with many organs such as the 
heart, having both a parasympathetic and sympathetic innervation. For these organs, 
it is the proportion of sympathetic and parasympathetic stimulation they receive that 
is important in how they behave. Figure 1.9 is a representation of the autonomic 
system, highlighting important differences between its sympathetic and parasympa-
thetic components. 
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Figure 1.9 A diagrammatic representation of the autonomic nervous system 
with both sympathetic (left) and parasympathetic components (right). 

Having understood the anatomical makeup of the ANS, one can begin to explore 
how it overcomes the challenges faced by the human body sensor network as a 
whole. Sensor design, as mentioned previously is a very important part of any such 
network, and in the case of the human body, this consists of a range of sensor types 
that are both very sensitive and very accurate. For example, chemoreceptors 
(chemical receptors) respond to changes in oxygen and carbon dioxide in the blood, 
and are located either peripherally (in carotid and aortic bodies) or centrally (in the 
brain). Based on the concentration of these solutes the receptors are able to regulate 
respiratory rate and cardiac activity, to maintain adequate perfusion of tissues and 
vital organs. Alternatively baroreceptors (pressure sensors) found in the aortic arch 
and carotid sinus, are sensitive to the rate of blood pressure change as well as to the 
steady or mean blood pressure, and are thus able to communicate this information 
to higher centres in the brain, thereby regulating the blood pressure by altering both 
the heart’s output, as well as the diameter of blood vessels. Figure 1.10 shows the 
sensor and effector systems used by the human body to detect and regulate changes 
in blood pressure. 
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Other types of mechanical receptors (mechanoreceptors) that the body possesses 
include “muscle spindles, which are found between skeletal muscle fibres. Ar-
ranged in a parallel distribution with these fibres, the spindles respond to the pas-
sive stretch of the muscle, but cease to discharge if the muscle contracts isotoni-
cally, thus signalling muscle length. They are therefore the receptors responsible for 
the stretch reflex such as that elicited by tapping at the knee (knee jerk) as shown in 
Figure 1.10. Similar mechanical receptors also exist within the cardiac musculature 
that when overstretched due to increased filling of the heart chambers, result in a 
compensatory increased strength of cardiac contraction. 

Figure 1.10 Diagrammatic illustration of the sensor and effector systems 
used by the human body to detect and regulate changes in blood pressure.  

Although biocompatibility is not an issue within the body’s own sensors be-
cause they are self-manufactured, power source miniaturisation is an impressive 
feature of this system. In general, the body utilises glucose as a substrate using ei-
ther anaerobic or aerobic respiration to turn this fuel into packets of energy from 
which is carries in the form of specialised molecules such as Adenosine Triphos-
phate (ATP). Nerves forming the wiring of the system transmit the information in 
the form of action potentials, with each action potential of approximately 110 mil-
livolts lasting 5-10 milliseconds. The conduction velocity of nerves can be as high 
as 100 metres per second, making this a very efficient system. Multi-sensory data 
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fusion occurs in the human brain, where each nerve is connected to approximately 
10,000 other nerves through special dendritic connections. 

Finally, nonvisual context awareness is another important feature of the human 
nervous system, and is under higher brain centre control. A very good example of 
this is the body’s use of proprioception (position sense), particularly with regard to 
body extremities such as the limbs. To achieve this, the human body uses a number 
of receptors which signal the position and movement of a limb. These include joint 
afferents (located in the joints), sensitive to extremes in joint angle, muscle spindles 
located in the muscle sensitive to position and movement (velocity), Golgi tendon 
organs located in the muscle tendon sensitive to tension (force), and touch receptors 
in muscle and overlying skin. Input from all these sensors is processed by the brain 
and allows the body to know exactly where in space and in what position its differ-
ent components (limbs) are without the need to look at them (Figure 1.11). Once 
the input coming into the nervous system is processed, depending on the state of the 
muscle, commands are sent back to either maintain or change position (Figure 
1.12). 

Figure 1.11 Histological slides of the sensors used for context awareness in 
joint proprioception (copyrighted material used with permission of the au-
thor, the University of Iowa, and Virtual Hospital, http://www.vh.org).



1. Introduction       27

Figure 1.12 Diagrammatic representation reflex arc. 

1.7 The Future: Going from “Micro” to “Nano” 

Until now, applications for the use of BSNs in clinical practice have focussed 
around external and implantable sensors that lie relatively static within the body. 
However, it is the luminal organs such as blood vessels, gastrointestinal tract, uri-
nary tract, ventricles of the brain, spinal canal, lymphatic, and venous systems that 
offer the greatest opportunity to sense acute disease processes and monitor chronic 
illnesses quickly and efficiently. These cavities are essentially the “highways” filled 
with body fluids, inflammatory mediators, cells, and pathogens, forming what are 
the “battlefields” where disease processes are fought. As the accuracy of our sen-
sors increases and their size decreases, it is in these domains that we would like to 
have the maximal affect on any disease process. Recent advances in nano-
technology have meant that delivering sensors within these luminal cavities is for 
the first time a real possibility. Figure 1.13 graphically illustrates the “battle” 
against disease. 
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Figure 1.13 Conceptualisation of a MEMS robot attaching itself to a red 
blood cell (copyright Coneyl Jay/Science photo library). (See colour insert.)

Miniaturisation of many sensors to the “micro” scale is already taking place. 
Figure 1.14 shows a conceptual “submarine” type sensor system that may be de-
ployed into the blood stream (either in the arterial or venous system). Nanoscale 
particles are likely to be the smallest component of sensing systems and may be de-
ployed in a number of ways. For example, nanoscale particles may themselves be 
coated to form a biomechanical sensing system. An existing example of this is a 
protein-encapsulated single-walled carbon nanotube sensor that alters its fluores-
cence depending on exposure to glucose in the surrounding tissues [32]. In fact 
nanoparticles have even been attached to antigen amyloid-derived diffusible ligands 
in order to develop a nanoscale optical biosensor for Alzheimer’s disease [75]. Fi-
nally, nanoparticles may act as sensors themselves. The scenario of injecting nano-
scale biosensors into luminal cavities, where the sensor comes in contact with its 
substrate, binds to it, and is carried to the site of maximal disease activity is no 
longer unrealistic. Such targeted sensor delivery and binding may allow extremely 
targeted disease process monitoring, and therapy.  
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Figure 1.14 Conceptualisation of a MEMS submarine injected into a blood 
vessel (copyright microTEC, Germany). (See colour insert.)

An example of nanoscale particles already in use is Ultra-Small Particles of 
Iron Oxide (USPIO) for pathologic tissue characterisation. The long blood circulat-
ing time and the progressive macrophage uptake in inflammatory tissues of USPIO 
particles are properties that can be interrogated by imaging techniques such as Mag-
netic Resonance Imaging (MRI). The USPIO signal alterations observed in 
ischemic areas of stroke patients can be related to the visualisation of inflammatory 
macrophage recruitment into human brain infarction, whereas in brain tumours, 
USPIO particles which do not pass the ruptured blood-brain barrier fairly soon after 
injection can be used to assess tumour microvascular heterogeneity. Existing re-
search has also shown that USPIO contrast agents can reveal the presence of in-
flammatory multiple sclerosis lesions. They can also help pick up the spread of rec-
tal cancers to the lymphatic system by increasing the diagnostic accuracy of rectal 
imaging [76]. 

Whilst miniaturisation means that deploying microscale sensors is going to be-
come easier, getting the information out of these sensors will be a significant chal-
lenge [32]. Optical imaging techniques have been suggested as a solution to the 
problem of data extraction from such a small sensor, and would allow, for example, 
dynamic investigation of the signalling processes that go on inside the cell itself.  

Finally, self-configuration and self-assembly are both essential requirements of 
such sensing systems, as we find we are able to place them in increasingly inacces-
sible locations. Optical technologies such as fluorescence resonance energy transfer 
may provide on solution to this requirement for self-assembly [77]. 
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1.8 The Scope of the Book 

In this chapter, we have highlighted the scope for monitoring human disease proc-
esses. Although proprietary designed wireless sensor networks offer some solutions 
to the problems of health monitoring, it is clear that a specialised BSN platform of-
fers the opportunity to monitor human beings in a way that has not previously been 
possible. This truly ubiquitous and pervasive patient monitoring system will, in the 
first instance, allow us to identify these disease processes, and will later on allow us 
to accurately monitor their progress and devise effective therapeutic measures. The 
challenges of improving sensor design, biocompatibility, energy supply, power 
scavenging, secure information transfer, and context awareness must all be over-
come before such a system is effective. Closing the feedback loop to deliver tar-
geted therapy, and thus reducing unnecessary drug side-effects is also a real possi-
bility.  

The purpose of this book is to address both basic issues and emerging trends 
concerning biosensor design and interfacing, protein engineering for biosensors, 
wireless communication, network topology, communication protocols and stan-
dards, energy scavenging, bio-inspired sensor processing, multi-sensor fusion, and 
context-aware and autonomic sensing. Figure 1.15 illustrates the structure of the 
materials covered.  

In Chapter 2, we will introduce the basic concept of electrochemical sensors and 
biosensors. This chapter covers the basic principles of electrochemical devices 
based on potentiometry, amperometry and voltammetry. The chapter also outlines 
the basic instrumentation requirements for these devices and looks at issues sur-
rounding biocompatibility and sensor data handling. In Chapter 3, we will focus on 
the biological aspects of biosensors in two important regards; the first is the bio-
logical molecules involved in the molecular recognition processes that give the bio-
sensors their specificity and sensitivity and the other is concerned with biocompati-
bility. We will discuss how these proteins can be engineered to improve sensor 
performance and address the mutual interaction between the sensor and the tissue 
within which it is located. Although progress has been made in making implantable 
biosensors reliable and robust for a period of a few days, there are still significant 
technical issues associated with long-term implantation. This reflects in part the re-
sponse of the tissue to trauma and the inherent robustness of the biological mole-
cules used in the sensor. This implies that the solution to long-term implantation 
will come from a combination of factors including minimally invasive implantation, 
understanding and modulating tissue response to implantation and modifying the 
properties of the biomolecules. 

Chapters 4 and 5 will address wireless communication, network topologies, 
communication protocols and standards for BSNs. In Chapter 4, we will discuss 
two types of communication links: the inductive loop and radio frequency commu-
nication. The inductive loop is widely used today for transferring small packets of 
data without requiring an implanted power source. Whilst an RF system does re-
quire an implanted battery source, it is capable of transferring larger packets of data 
within a shorter time period and over greater distances. For this reason, RF-based 
communication will be the main topic of this chapter. Whilst wireless communica-



1. Introduction       31

tion through the air has been extensively documented, communication from im-
planted devices through the human body is a new area of study. This chapter will 
discuss body properties and their effect on radio propagation. The human body is an 
uninviting and often hostile environment for a wireless signal. One of the most im-
portant considerations for implanted devices is physical size, meaning in-body com-
munication system designs are restricted to an extremely small antenna that needs 
to be characterised to enable it to be effectively coupled to the transceiver. A sig-
nificant portion of this chapter is devoted to antenna measurement and coupling cir-
cuit design, as it is critical to the success of an implanted RF system. 

Based on the contents described in previous chapters, Chapter 5 illustrates the 
use of different network topologies for practical deployment of BSNs. Although the 
initial use of BSNs will only consist of limited sensor nodes, more complex net-
work topology will be adopted as the devices get smaller and more ubiquitous. This 
will allow more effective use of sensor message hopping, distributed inferencing 
for improved system robustness and noise resilience with built-in redundancies. 
Particular emphasis will be made in the chapter touching upon the integration of 
body sensing with ambient sensing. In such cases, the joining and rejoining of a 
shifting series of different networks (home, public, and hospital) and the addition or 
removal of differing sensor nodes under different context requirements can pose 
significant challenges. A detailed overview of the current and emerging communi-
cation protocols and standards for implantable, wearable, and ambient wireless 
sensing will be provided, and issues concerning standards for overall healthcare 
system integration with pervasive sensing will also be discussed. 

With the increasing miniaturisation and cost reduction of sensors, circuits and 
wireless communication components come new possibilities for networks of wire-
less sensors, in wearable and other applications. However, for sensors to be wire-
less, or untethered, requires not only wireless communication to and from the 
nodes, but also wireless powering. Batteries, of course, provide this capability in 
the great majority of portable electronic devices, and thus are the obvious solution 
for the wireless sensor node application. However, the need for replacement or re-
charging of batteries introduces a cost and convenience penalty which is already 
undesirable in larger devices, and is likely to become unacceptable for sensor nodes 
as their ubiquity grows. As an alternative, sources which scavenge energy from the 
environment are highly desirable. With the decreasing power demands for sensing, 
processing, and wireless communication for BSNs due to improved electronic de-
sign and miniaturisation, alternatives to battery power based on energy scavenging 
techniques are becomingly increasingly realistic. In Chapter 6, we will discuss the 
basic power requirements for BSN nodes and possible architectures, particularly 
those related to inertial energy scavenging techniques. Issues concerning fabrica-
tion, module design, power electronics and system effectiveness will be discussed.  

The natural world is analogue and yet the modern microelectronic world to 
which we are exposed represents real world data using discrete quantities manipu-
lated by logic. The new trend set by BSNs is beginning to see the processing inter-
face move back to using continuous quantities which are more or less in line with 
the biological processes. This computational paradigm we label “bio-inspired” be-
cause of the ability of silicon chip technology to enable use of inherent device phys-
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ics, allowing us to approach the computational efficiencies of biology. In contrast to 
the digital approach, where each operation is performed through a network of de-
vices operated in switched fashion, the physics of the elementary device itself, ei-
ther electrical, chemical or electrochemical, can be exploited to perform the same 
operation in an analogue way. Therefore both the energy per unit computation and, 
silicon real-estate are reduced, resulting in significantly increased overall resource 
efficiency. In Chapter 7 we will first look at the motivation for bio-inspired signal 
processing and discuss the relative merits of analogue and digital signal processing, 
and the need for hybrid architectures. The concept of applying bio-inspired design 
methodologies to CMOS-based biosensors will then be introduced. Field-Effect 
Transistor (FET) based sensors will be presented, including a detailed example of 
the application of analogue processing techniques to these devices. Finally, future 
directions and applications for biochemically inspired design will be discussed. 

The pursuit for low power, miniaturised, distributed sensing under natural 
physiological conditions of the patient has also imposed significant challenges on 
integrating information from what is often heterogeneous, incomplete, and error 
prone sensor data. For BSNs, the nature of errors can be attributed to a number of 
sources, but motion artefact, inherent limitation and malfunctions of the sensors, 
and communication errors are the main causes of concern. In practice, it is desirable 
to rely on sensors with redundant or complementary data to maximise the informa-
tion content and reduce both systematic and random errors. This, in essence, is the 
main drive for multi-sensor fusion described in Chapter 8, which is concerned with 
the synergistic use of multiple sources of information. In this chapter, we will dis-
cuss the basic concept of multi-sensor fusion and the methods related to data, fea-
ture and decision levels of data fusion techniques. The key emphasis of the chapter 
is the introduction of optimal averaging techniques for sensor array data and a fea-
ture selection algorithm based on Bayesian theory and receiver operating character-
istic analysis.  

With BSNs, effective sensor fusion and statistical feature reduction is crucial to 
the use of wireless sensor networks incorporating both built-in redundancies and 
tissue heterogeneity. For the monitoring of patients under normal physiological 
status, the contextual information is important to the capture of clinically relevant 
episodes. In Chapter 9, we will investigate issues concerning context aware sensing 
for the practical deployment of BSNs. The key emphasis of this chapter is the intro-
duction of a novel framework, called Spatio-Temporal Self-Organising Map
(STSOM), by incorporating the spatio-temporal behaviour of self-organising neural 
networks for reliable context detection. The significance of the contents provided in 
this chapter is twofold. First, it provides an effective framework for reliably extract-
ing contextual information based on the feature selection framework described in 
Chapter 8. Secondly, it illustrates the possibility of complete analogue implementa-
tion of the framework based on STSOM, such that the sensing architecture can be 
realistically powered up by the energy scavenging techniques described in Chapter 
6.

The use of BSNs can be influenced by a wide range of limitations including 
processing power, storage, network connectivity, and available power sources. In 
most cases, it is not possible to guarantee or accurately predict the characteristics of 
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these resources in advance. In particular, wireless network communication is sub-
ject to many unpredictable environmental effects, even over short-range connec-
tions such as between body and wearable devices. Issues related to Quality of Ser-
vice (QoS), variable resources monitoring, adaptation techniques applied to data 
including compression, data security, authentication and privacy will need to be ad-
dressed. In Chapter 10, we will introduce the basic concepts involved in autonomic 
sensing and describe a number of other approaches that are inspired by biological 
systems. The use of the autonomic sensing paradigm for BSNs is relatively new, 
and in this chapter we will discuss the general issues and new opportunities in-
volved in the development of self-protecting, self-healing, self-optimising, and self-
configuring BSNs. The main technical details of the chapter will cover the use of 
multidimensional scaling for self-discovery of sensor co-locations for automatic 
configuration of routing structures, and the use of Bayesian belief propagation for 
efficient, distributed inferencing and fault tolerant sensing.  
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Figure 1.15 The structure of this book and the interdependency of the chap-
ters.

In Chapter 11, we will provide a practical perspective of designing wireless sen-
sor microsystems. Wireless sensor microsystems offer very diverse functionality, 
and this brings about a range of technical design problems. Design skills include 
sensors, ASICs, wireless, low power, packaging, software, networking and power 
sources. These problems become more challenging the smaller the final device 
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must be. In this chapter, we will cover a range of design topics that are of relevance 
to wireless BSN microsystem designs and the general design principles involved 
will be elaborated in the context of developing an ingestible lab-in-a-pill device. 
This offers a particularly challenging case study echoing many of the issues that 
have been discussed in other chapters. Finally, Chapter 12 concludes the book by 
summarising the materials presented and highlighting some of the major research 
and development opportunities lying ahead. To help readers entering into the field 
and starting up some of the practical experiments involving BSNs, we have pro-
vided two appendices outlining the design background and detailed technical and 
programming issues for the use of the BSN development kit.  

The inherent diversity of the materials covered for the effective development of 
BSNs means it is not essential for the readers to go through the chapters provided in 
a rigid sequence, and Figure 1.15 outlines the inter-dependency of all the chapters. 
It is suggested that readers can take an appropriate route depending on your techni-
cal background to follow the materials presented, either used as a reference for BSN 
research and development or as a graduate level text book. A dedicated web site 
(http://www.bsn-web.info) that accompanies the contents of the book has also 
been created. Interested readers can use this site to find out the latest updates and 
access BSN related resources, particularly those related to the BSN development kit 
as described in the appendices of this book.  
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Biosensor Design 

and Interfacing 

Bhavik A. Patel, Costas A. Anastassiou, and Danny O’Hare 

2.1 Introduction 

Whilst there have been substantial advances in networking sensors for measuring 
physical parameters of clinical significance, e.g., for blood pressure and heart rate, 
progress incorporating sensors into chemical sensor networks has been patchy. This 
is principally because chemical sensor technology is more lab-based and specialised 
and there are few examples of widely commercially available devices for develop-
ers. The dominant technology is electrochemistry, the study of which is typically 
confined to senior year chemistry degrees or graduate study in the analytical sci-
ences. Nonetheless, there is reliable, mature technology in the open literature. This 
chapter is designed to provide a broad background on electrochemical sensors and 
biosensors, and to outline the major design issues and provide some pointers for the 
coming technology. 

Biosensors are a means of measuring local chemical concentrations. Analytical 
scientists make a useful classification of the measurement process: there is the sam-
ple which can be a drop of solution, a blood sample or the whole organism, the ana-
lyte which is the chemical species of interest and the matrix which is the remainder 
of the sample. The key performance indicators are: 

• Selectivity: the ability of the sensor to respond only to the analyte.  
• Sensitivity: the output (typically voltage or current) produced per 

unit change in concentration.  
• Limit of Detection (LOD): the lowest detectable analyte concentra-

tion, commonly defined as the concentration equivalent of three 
standard deviations of the y-intercept of the calibration working 
curve.
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Stability of the sensitivity and offset are also important factors but frequently 
depend more on matrix effects such as protein adsorption rather than on intrinsic 
sensor properties. 

Balkanisation of modern technology and science has had many baleful effects. 
In the case of sensors research, devices have been developed which meet no par-
ticular clinical need or have never been tested in real applications. The literature 
contains thousands of papers per year describing sensors which for various reasons 
– inadequate LOD, temporal and spatial resolution or poor selectivity – will never 
be used to solve the problems they purport to address. It is essential that the meas-
urement problem be properly defined in the initial stages of sensor development. 
This requires multi-disciplinary development teams consisting of clinicians to aid 
problem definition, analytical scientists and electronic engineers. 

The measurement of chemical concentration, frequently seen as obvious, does 
not per se constitute a scientific question. The scientific or clinical problem under 
examination should be the primary design criterion in any sensors project. There are 
typically three reasons for measuring concentration: 

• Statutory requirements: For example, maximum blood alcohol lev-
els for motorists are specified in most countries. The legislation 
specifies the analytical methods for forensic purposes. 

• Correlation with known clinical states: Type I diabetes provides the 
most obvious example. Sensor measurements enable improvements 
in clinical management by increasing the frequency of measure-
ment and allowing the patient to take measurements away from a 
formal clinical setting. The biosensor adds value by providing a low 
cost alternative to direct clinical observation. 

• Fundamental research: Biological systems are characterised by 
rapid chemical fluxes. The relationships between the exchange of 
chemical information within the organism and both normal and 
pathophysiology require highly localised temporally resolved 
measurements of concentration. The recent explosion of scientific 
interest in neurophysiology and the development of devices for di-
rectly interfacing neurons with electronics for active prostheses 
provide strong drivers for the measurement of neurotransmitters in 
real time. A representative application, the study of aging in neu-
ronal systems, is described later in this chapter.  

2.1.1 What Is a Biosensor? 

The term “biosensor” strictly refers to chemical sensors where a biological sensing 
element such as an enzyme or antibody is used to couple the analyte concentration 
in a sample matrix to a transducer as shown in Figure 2.1. 
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Figure 2.1 Schematic representation of a biosensor. 

However, the term is also more loosely used to describe devices, including sig-
nal conditioning and processing elements, which are used to measure chemical con-
centrations in biological systems, notably living organisms. Whilst it is not helpful 
to broaden commonly agreed scientific definitions, there is some sense in covering 
this broader class of devices since they have widespread application in physiologi-
cal measurement and wide potential application in a clinical setting. For this reason, 
this chapter will almost exclusively focus on electrochemical sensors, where the 
transduction event is an electron or ion transfer at the interface of an ionic solution 
(which could be blood, extracellular fluid or cerebrospinal fluid) and a selective 
membrane or electrified solid, such as a metal, carbon or organic conductor. Addi-
tionally, electrochemical biosensors are those devices which have found the most 
widespread utility in basic science and established the most commercial success to 
date. 

Electrochemical methods offer unique advantages over other transduction 
modes such as those based on the interaction of electromagnetic radiation, for ex-
ample UV/visible spectrometry or magnetic resonance imaging. The principal ad-
vantage is that electrochemical events are kinetic in origin. That is to say, the result-
ing electrical signal is a function of the rate of a charge transfer or partitioning 
process. This is in sharp contrast to techniques based on the interaction of electro-
magnetic radiation with matter where the signal strength is ultimately a function of 
the number of absorbing species. As a consequence, signal intensity decreases with 
sample size, a major disadvantage for biological applications where miniaturisation 
is an important factor in engineering effective measurement. In electrochemical 
transduction however, the signal is a function of concentration, an intensive prop-
erty, and one expects the same signal per unit area from a picolitre sample as from 
an ocean provided the analyte concentration is the same. This enables the investiga-
tor to make a priori decisions on which is the important length scale for measure-
ment – subcellular machinery (10-100nm) cells (1-100µm), capillaries (10-
1000µm) or organs (mm-cm). Successful electrochemical measurements have for 
many years been undertaken with devices smaller than 0.1 µm offering unparalleled 
and tuneable spatial resolution. Additional advantages include rapid response times 
(typically a millisecond or better), ease of miniaturisation, compatibility with 
CMOS processing and low cost. Miniaturisation and low cost also allows for mas-
sive redundancy and signal averaging to provide more durable and robust meas-
urement. 
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It is however the case that biological tissue is a hostile environment for any 
measurement device, regardless of the transduction mode. This chapter aims to pro-
vide an introduction to electrochemical biosensors, review recent advances and de-
scribe representative applications where electrochemical devices have provided im-
portant clinical and physiological information. We will also consider the particular 
problems associated with measurement in the biological milieu (foreign body reac-
tions and sensor fouling) and describe some strategies which have been found to be 
successful in minimising these difficulties. These issues cannot be adequately ad-
dressed without understanding the basic operating principles of these useful and 
widely-used devices. 

2.2 How Do Electrochemical Devices Work? 

This section is by no means exhaustive – electrochemistry is composed of a number 
of complex phenomena and electron transfer at an electrified interface can only be 
adequately described in terms of electron tunnelling. There is no classical physical 
model that describes the phenomena. A detailed discussion of the intricacies of 
quantum mechanics is beyond the scope of this review. However, a basic under-
standing of the underlying principles greatly aids interpretation of a diverse litera-
ture and can inform engineering of successful sensor systems. 

There are two predominant modes of operation: a) potentiometric where the 
sensor output voltage can be quantitatively related to the target analyte concentra-
tion, and b) amperometric or voltammetric where a non-equilibrium voltage is im-
posed and the resulting current is related to concentration. Potentiometric devices 
have the following characteristics: 

• The system is at equilibrium. No current is passed and the analyte is 
not consumed. 

• Instrumentation is simple. All that is required is a reference elec-
trode and a high impedance voltmeter. 

• Selectivity is inherent. The selective element is typically a mem-
brane or oxide coating. 

• The response is logarithmic. Typically, there is a 59 mV change in 
output per decade change in concentration. This leads to a large lin-
ear dynamic range but leads to poor sensitivity in electromagneti-
cally noisy environments. 

• The practical dynamic range is hard to define since it is determined 
by deviations from the log-linear response at both ends of the cali-
bration working curve. 

Amperometric (current output) and voltammetric (current-voltage output) devices 
can be characterised as follows: 
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• A non-equilibrium potential is imposed on the sensor. The result-
ing current flow under some circumstances is linearly related to 
concentration (amperometry) or the current voltage characteristics 
can be used to provide both qualitative (identity) and quantitative 
(concentration) information. 

• Selectivity is achieved by potential control and engineering of the 
electrode surface. 

• Non-steady potential programming can be used to provide further 
selectivity and extend the dynamic range. 

• Instrumentation is more complex typically comprising a signal 
generator, control amplifier, current to voltage conversion, a refer-
ence electrode for potential control and a counter electrode to pro-
vide the current path. 

• The technique is limited to those analytes that undergo electron 
transfer reaction in the potential range available in water, i.e. it
must be capable of being reduced at potentials more positive than 
water reduction to hydrogen or be oxidised at potentials more 
negative than water oxidation to oxygen. At physiological pH, this 
potential range is typically -0.9V to +1.2V depending on electrode 
material. 

The selection of potentiometric versus amperometric/voltammetric modes of 
operation is dictated by the nature of the sample and the selectivity and sensitivity 
required, though there are some useful general rules: a) neutral species cannot be 
directly sensed in the potentiometrc mode, and b) those species which cannot be 
oxidised in the potential range offered by water cannot be directly sensed by am-
perometry/voltammetry. 

2.2.1 Potentiometric Devices 

2.2.1.1 Ion Selective Electrodes (ISEs)

The ISEs have their origin in the glass pH electrode though the underlying phe-
nomenon is that which is responsible for cell membrane potentials. At the heart of 
an ISE is a membrane which shows selective permeability towards the ion of inter-
est. The membrane can be glass, an ionic conducting crystal, an immiscible liquid 
supported in a porous polymer or a polymer blend containing an ion exchanging or 
ion binding compound. 

Glass and other hydrogen ion selective electrodes are mature technology and 
were the subject of a review by Bates [1] which nonetheless remains authoritative. 
Early biological applications of this technology are reviewed by Cater and Silver 
[2], though special mention must be made of Hinke [3] who produced a 3µm di-
ameter electrode and Thomas [4] who made sub micron device, an astonishing 
technical achievement. Similar devices were briefly available commercially during 
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the 1980s, though the combination of extreme fragility and high impedance led to 
their abandonment as commercial products. 

ISEs consist of a selective membrane separating the test solution (or experimen-
tal subject) and an internal filling solution of known composition. The membrane is 
supported at the end of an insulating cylinder. The membrane itself can be glass (as 
for the pH electrode), a solid ionic conductor (such as the Eu(III)-doped LaF3 single 
crystal used in the hugely successful fluoride sensor) a PVC membrane with an ion 
exchanger or ligand dissolved in it or an immiscible liquid held in the end of a 
pulled glass capillary to produce a sensor capable of operating on the cellular length 
scale.

ISEs are equilibrium devices. The thermodynamic condition for equilibrium is 
that the free energy of each chemical species is equal on both sides of the mem-
brane. The free energy for any ion i is the sum of the partial molar free energy, 
chemical potential µi and the electrical potential φ scaled by Faraday’s constant F
and the charge on the ion z (including sign): 
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Note that electrochemical potential, i i zFµ µ φ= + .
If we designate the external solution as phase α and the internal filling solution 

as phase β, the electrochemical potential for the target species i must be equal on 
each side of the membrane: 
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If we define the electrical potential difference, i.e. the voltage we actually meas-
ure experimentally, as Em = φ(β) - φ(α), simple rearrangement gives: 
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where ai is the thermodynamic ion activity. The activity is the thermodynamically 
effective concentration which is equal to the product of the ion concentration and 
the ion activity coefficient γi. The activity coefficient is a function of the ionic 
strength and a detailed discussion is beyond the scope of this chapter. However, for 
the purpose of understanding the operation of an ISE, it is important to note that γi
is constant, provided the ionic strength is kept constant. This means that any cali-
bration solution must have the same ionic strength as the test solution. This is easily 
achieved in laboratory-based ex situ investigations through the use of ionic strength 
adjustment buffers. For in vivo measurement, the actual concentration detected with 
an ISE (or indeed any device which depends on membrane potentials such as the 
ISFET) remains uncertain. However, the change in concentration is likely to be cor-
rect since ionic strength is tightly controlled in physiological systems. 
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The important thing to note about (2.3) is that is shows the origin of the depend-
ence of the membrane potential on the logarithm of the activity (or concentration). 
It also provides an important design criterion – the internal filling solution of the 
ISE needs to be of a fixed and known composition. 

Practical devices typically contain a silver chloride reference electrode inside 
the ISE and another silver chloride reference electrode external to the membrane. 
For practical sensors, the external reference electrode can be packaged with the ISE. 
The governing equation will therefore contain terms that describe the reference 
electrode potentials. Since these remain constant under correct operation, the over-
all equation describing the operation of an ISE can be simplified to: 

log iE K S a= + (2.4)

or
' log iE K S c= + (2.5)

where K' now includes the ion activity coefficient, under conditions where it is rea-
sonable to assume that it is constant. When converted into base ten logarithms, the 
ideal slope of calibration (i.e. the sensitivity) will be given by: 

2.303 RT
zF

(2.6)

so for a singly charged positive ion, the slope of calibration will be 59mV per dec-
ade change in concentration at room temperature. 

Limits of detection for ISEs are typically around micromolar. Pioneering re-
search by Pretsch and by Bakker [5] over the last 5-6 years has clearly demon-
strated that these limits arose principally from leaching of analyte ions from the se-
lective membrane. By careful design, they have shown that it is possible to extend 
the LOD by three orders of magnitude down to the nanomolar range. At these ultra-
trace levels, the approximation that concentration equals activity is of course sub-
stantially improved. 

2.2.1.2 Metal Metal Oxide (MMOs) pH Electrodes  

Measurement of pH is important in the study of tissue metabolism, an indicator of 
nutritional status and has even been used as a marker of vesicular release in neuro-
physiology research. Tissue pH will fall if oxygenation falls and the metabolism 
switches to lactate production. As a consequence, this relatively easy to implement 
measurement can be a good marker of tissue nutrition or viability and can be an im-
portant marker in wound healing. 

Glass membrane pH electrodes, though well-established for laboratory use suf-
fer from a number of serious disadvantages in biomedical application: slow re-
sponse times, high impedance, mechanical fragility, requirement for frequent re-
calibration and vulnerability to membrane fouling with consequent loss of accuracy 
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and precision. These disadvantages are compounded in biological measurements 
where rapid transient changes in pH are as of much or greater interest than the 
steady value. 

Alternative techniques include the use of liquid ion exchangers, either in plasti-
cized PVC membranes [6] for intravascular measurements or held by capillary ac-
tion at the tip of a silanised glass micropipette for intracellular recording [7]. How-
ever, both of these approaches retain the key weaknesses of glass electrodes: poor 
mechanical stability, slow response times and poor stability. 

More promising technology is in the form of Metal-Metal Oxide (MMO) elec-
trodes, due to their intrinsic mechanical stability, relative ease of miniaturisation 
and compatibility with CMOS processing, which holds out the possibility of inte-
grated devices. They were the subject of an early review by Ives [8] and their appli-
cation as pH sensors was reviewed by most recently by Glab [9]. 

Whereas in glass and liquid membrane electrodes the analytical signal originates 
in a membrane potential, in metal-metal oxide electrodes the measured electrode 
potential is due to the equilibrium between a sparingly soluble salt and its saturated 
solution; in other words potential depends on the thermodynamic solubility product. 
MMO electrodes are a special case of this kind of electrode since the anion partici-
pates in the self-ionisation of the solvent. The potential dependence on pH should 
therefore be given by: 

, ,
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where  is a constant, lumping together the standard potentials, the 
solubility product of the metal oxide and the ionization product of water. R is the 
universal gas constant, T is the absolute temperature and F is Faraday’s constant, 
the charge on one mole of electrons – essentially a scaling factor that converts 
chemist’s units (moles) into electrician’s units (volt). The ideal properties of a 
MMO electrode have been listed by Ives [8] as: 

(a) The metal must be sufficiently noble as to resist corrosion. 
(b) It must be possible to obtain the metal in a reproducible state. 
(c) The oxide must be stable (This is incompatible with (a), though in 

practice, the oxide must only be scarcely soluble). 
(d) It must be possible to obtain the oxide in a reproducible state. 
(e) The oxide must be scarcely soluble yet able to participate in the equi-

librium reaction sufficiently rapidly to give an adequate current den-
sity.

These properties, though scarcely achievable practically ((a) and (e) above are 
strictly contradictory) are useful guides to experimentation. 

No MMO system has been found which is well-behaved for all applications, 
though antimony electrodes have been widely used for many years in medical ap-
plications [10] and have recently seen application as potentiometric sensing tips in 
scanning electrochemical microscopy [11]. However, there are several serious 

, ,M MO H
E +
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drawbacks to using antimony electrodes in vivo: Ives has noted that they must be 
used in aerated solutions [8] and that Nernstian or even rectilinear responses can not 
be relied upon. The solution must not contain oxidising or reducing agents or com-
plexing agents such as citrate, oxalate, tartrate or certain amino acids. There is a re-
sponse to dissolved oxygen which is caused by localised corrosion for which the 
cathode reaction is oxygen reduction inevitably leading to sensitivity to stirring. 

As a consequence of the shortcomings of the two most widely used pH sensors 
(glass membrane ISE and the antimony electrode), there has been substantial recent 
interest in pH sensors based on hydrated iridium oxide. There are several methods 
for preparing these devices, reviewed by Glab et al [9] though they can be conven-
iently divided into two types: electrochemically generated iridium oxide films 
(widely known as AIROF – Anodic Iridium Oxide Film) and thermally generated 
iridium oxide which appears to be chemically distinct. These devices are of interest 
due to their reported stability in a wide range of aqueous solutions, low impedance 
and fast response [12] and the compatibility of iridium with CMOS processes al-
lowing the prospect of integrated devices. The earliest report is a patent by Perley 
and Godshalk [13], though intense activity in this area dates from seminal papers 
describing the fundamental redox chemistry by Burke [14] and the publication of a 
reliable and well-characterised electrochemical method of preparation of AIROF 
electrodes by Hitchman [15]. More recently, Ir-based pH sensors have been used as 
potentiometric probes in scanning electrochemical microscopy [16], in Severing-
haus-type CO2 sensors [17, 18] and mechanistic aspects have been considered in 
more detail by Hitchman [19]. Biological applications have been thin on the ground 
but Ir-based devices have been applied to the study of pericellular pH in myocytes 
during ischaemia [20] and to investigate biofilm formation [21]. 

There are broadly two methods of preparing iridium oxide pH sensors: a) elec-
trolytic generation of the oxide either from iridium metal or direct deposition of a 
film of hydrated oxide from a solution of iridium (III) hexachloride, and b) thermal 
generation. Reliable protocols for these methods are given below. 

Electrolytic Preparation of AIROF Electrodes 

Iridium is a dense, brittle and expensive metal, to the extent that it is frequently 
more convenient to work with small pieces of iridium wire connected to platinum 
or cheaper material. Iridium wire (0.125mm diameter, 4-5mm in length, 99.99+%) 
was butt-welded to platinum wire in a natural gas/ O2 flame. Spot welding is simi-
larly successful but silver-loaded epoxy shows a high fail rate. The wire needs to be 
insulated everywhere but the sensing surface. This can be accomplished by dip 
coating in epoxylite resin. Additional mechanical strength can be achieved by em-
bedding in a hypodermic needle using low viscosity epoxy resin. Electrode tips 
were prepared by sawing on the bevel using a low speed saw (Buehler) followed by 
polishing on emery paper (1200 grit and 2500 grit) and aqueous alumina slurry 
(6µm, 1µm and 0.05µm, Buehler) on polishing cloths with ultrasonic cleaning in 
water between grades. The oxide film was generated by cycling the potential in sul-
furic acid (0.5mol dm-3) at 2V s-1 for 8000-12,000 cycles between the potentials of 
hydrogen and oxygen generation finishing with a 10mV s-1 scan stopping at the 
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main anodic peak. An iridium rod and Ag|AgCl (3M KCl) served as counter and 
reference electrode respectively. The reference electrode was connected to the cell 
using a K2SO4 (0.3mol dm-3) salt bridge to minimise chloride ion infiltration. This 
has been found by the present authors and others to be critical in the preparation of 
stable films [26]. Cyclic voltammograms were recorded at various intervals to as-
sess the extent of oxide film growth. In all cases, the resulting AIROF electrodes 
were soaked for 48 hours in deionised water (>15MΩ cm) prior to use. For addi-
tional stability in biological measurement, we have found that Nafion coating is 
very successful and barely affects sensitivity or response time. Nafion films were 
applied and annealed at 120°C according to the protocol described by Harrison and 
Moussy [22]. 

Calibration from pH 3 to 12.1 gave a super-Nernstian response of (69±2)mV per 
pH unit. Comparison of calibration curves recorded in N2 and O2 sparged solutions 
revealed a maximum perturbation of 0.9mV at pH 7.4. This places an absolute limit 
on the accuracy of 0.0125pH units if the oxygen concentration is unknown, though 
this does, of course, represent the worst-case scenario. 

Thermally Prepared Iridium Oxide Electrodes 

Iridium wire was annealed in a natural gas flame, straightened and carefully cleaned 
by sonication in acetone followed by rinsing with deionised water. After drying, 
one end (approximately 2mm) was wetted with NaOH solution (1mol dm-3) and the 
wire was heated to 800°C in a muffle furnace for thirty minutes. This was repeated 
until a blue-black coating was clearly visible to the naked eye. This typically took 
5-6 applications. The electrode was soaked for three days in deionised water before 
use. All but the electrode tip (approximately 0.5mm) was insulated using 
FEP/PTFE dual shrink tubing (Zeuss). Nafion films were applied using the tech-
nique described above. Calibration plot in Britton-Robinson buffer over the physio-
logically-relevant pH range of 6.5 to 8 gave a slope of 59.5mV/pH (r = 0.9999). 

Representative Physiological Applications 

Tissue culture and tissue engineering are areas of intense research. We have applied 
both thermally-prepared and AIROF pH sensors to study cultured intervertebral 
discs and examine the effect of physical loading. 

Figure 2.2 shows results from an experiment where an excised L5-S1 porcine 
intervertebral disc was cultured. pH was monitored in both the bathing solution and 
in the tissue using the thermally prepared iridium oxide sensors. The sensors 
showed good stability over the duration of the experiment and were able to track 
the changes in pH brought about by changes in the pH in the bathing solution. 

A major advantage of these devices is the relative ease of miniaturisation, at 
least down to 100µm. This enables them to be packaged alongside other devices. It 
is of particular interest to combine pH with the measurement of dissolved oxygen. 
An iridium wire was co-embedded with a 25µm gold microwire which, when polar-
ised to -950mV served as an oxygen sensor. After anodisation and Nafion coating, 
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the combined sensor was embedded in the intervertebral disc. Figure 2.3 shows 
how both tissue oxygenation and pH are affected by mechanical loading. 
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Figure 2.2 The response of a thermally prepared iridium oxide pH sensor in 
cultured intervertebral disc. Square points show the response of the solution 
sensor, triangles show the response of the tissue sensor. 
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In summary, iridium oxide electrodes have demonstrable utility in biology. The 
AIROF device fabrication is compatible with CMOS processing and the obvious 
next step is integration with amplification, signal processing, filtering, calibration 
and temperature compensation. Further miniaturisation may be achievable with 
templated electrolytic deposition on to, for example, carbon fibres or carbon nano-
tubes. 

2.2.1.3 Coupling Potentiometry to Biological Receptors 

Enzymes are proteins which catalyse chemical reactions. Many enzymes show a 
high degree of selectivity towards the substrate which can be exploited in sensor 
design. The key concept is that if we cannot produce a membrane that is selectively 
conductive for our target analyte, either because it is uncharged or no suitable syn-
thetic ligand or ion exchanger exists, then we can use an enzyme layer on the sur-
face of our potentiometric sensor. The enzyme layer reacts selectively with our tar-
get analyte and the reaction produces a detectable chemical species (such as H+) in 
direct proportion to our analyte concentration. A widely used example is urease 
which catalyses the hydrolysis of urea to ammonium and carbon dioxide. The car-
bon dioxide rapidly hydrolyses to produce bicarbonate and protons. The resulting 
pH change can be sensed using a pH electrode. Practical devices for this type of 
biosensor have been reviewed by Kuan and Guilbault [23]. Alternatively, the am-
monium can be detected with an ion selective electrode, or the carbon dioxide can 
be detected using a Severinghaus type gas sensor. The overall reaction scheme is 
shown below: 

( ) +
2 2 4 22

CO NH +H O 2NH +COUrease⎯⎯⎯→

2 2 3CO H O HCO H− ++ → +

The enzyme layer can be immobilised by trapping behind a semi-permeable 
membrane or by cross-linking with albumin and glutaraldehyde. A major problem 
inherent with this design is that the enzyme layer must be permeable to allow the 
liberated protons to reach the pH sensitive membrane but this inevitably means that 
the sensor will also be affected by changes in tissue pH, which are likely to accom-
pany any changes in major metabolite concentration. Whilst compensation can be 
introduced using a similar, but enzymically inactive sensor, this requires excellent 
reproducibility of both manufacture and performance. The former is relatively eas-
ily achieved but receptors of biological provenance are rarely so well-behaved. An 
additional problem with potentiometric biosensors is their inherent low sensitivity 
due to the log-linear Nernstian response (vide supra). For these reasons, the over-
whelming majority of biosensors use electrochemical sensors in the amperometric 
mode where potential control adds a degree of experimental control of selectivity 
and the linear relationship between current and concentration provides adequate 
sensitivity and simplifies the signal processing requirements. 
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2.2.2 Amperometry and Voltammetry 

The fundamental principle of all electrochemical sensors is the transfer of electrons 
to or from the conduction band of an electronic conductor (usually metal or carbon) 
to or from a redox active species at the electrode surface. Oxidation involves the 
loss of electrons from the highest occupied molecular orbital whereas reduction in-
volves electrons being injected into the lowest unoccupied molecular orbital. For 
some arbitrary pair of compounds where R represents the reduced form and O
represents the oxidised form, the reaction can be written as: 

O ne R−+ ⇔

though most electrochemical reactions are more complicated and can involve pro-
ton transfers and new phase formation (bubbles, electrodeposition). For any redox 
couple, there is a corresponding electrode potential which is related to the free en-
ergy through: 

G nFE∆ = − (2.8)

where G is the free energy change, n is the number of moles of electrons, F is 
Faraday’s constant (96,485.3C mol-1) and E is the electrode potential. Electrode po-
tentials are measured relative to a reference electrode, with the Standard Hydrogen 
Electrode (SHE) being given the arbitrary value of zero volt. Tabulated standard 
electrode potentials are usually reported relative to this standard. The relationship 
between equilibrium electrode potential, Ee, and concentration is given by the 
Nernst equation: 

[ ]
[ ]ln
RRTE E

nF O
°= − (2.9)

where E° is the standard electrode potential (the potential where both O and R are in 
their standard states), and [R] and [O] are the concentrations of the reduced and 
oxidised forms respectively. (Strictly speaking we should use thermodynamic ac-
tivities for concentrations, but activity coefficients are generally not known in the 
physiological situation. However, since the ion activity coefficients are primarily 
affected by ionic strength, they should at least remain approximately constant). 

In voltammetry and amperometry, we impose a non-equilibrium potential to 
drive the electrode reaction, either as an oxidation or reduction, and the resulting 
current (amperometry) or current voltage relationship (voltammetry) is recorded. 
The current voltage relationship is given in Figure 2.4. 

The relationship between current and overvoltage (η = E - Ee) is best under-
stood by considering the processes involved in the electrode reaction. Electron 
transfer can only take place at the electrode surface. Electron transfer at electrified 
interfaces with ionic solutions takes place by electron tunnelling and is therefore re-
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Figure 2.4 Schematic of the voltammetric steady state current-voltage rela-
tionship.

stricted to distances of about one bond length. The reactant O must therefore be 
transported to the electrode surface before electron transfer can take place. Regard-
less of the electrode system, this mass transport close to the electrode, within the 
mass transport boundary layer will take place by molecular Brownian diffusion. 
This can be characterised by a mass transport rate constant whose exact form will 
depend on electrode geometry and can be evaluated by solutions of Fick’s law with 
appropriate boundary conditions. Solutions exist for most common microelectrode 
configurations such as microdiscs, fibres and rings [24]. Once at the electrode sur-
face, electron transfer can take place: 

Surface SurfaceO ne R−+ →

Although this is written as a conventional chemical reaction, it is important to 
note that electrons are one of the reacting species. Therefore, the rate of reaction 
can be followed either as the rate of change of concentrations of R or O or by the 
rate of movement of electrons across the electrified interface. When scaled by Fara-
day’s constant, this rate is equivalent to the electrical current flowing in the electri-
cal circuit. The relationship between flux (J, mol s-1 m-2) and current i is given by: 

i nFAJ= (2.10)

where A is the electrode area. 
A key feature of electrochemistry is that the rate of the reaction can be directly 

and continuously measured from the current. This can be seen clearly in Figure 2.5 
below – all of the fluxes must be equal for the current to be sustained. 

The rate of electron transfer is characterised by the heterogeneous rate constant 
khet. This rate constant depends strongly on the overvoltage, given by the empirical 
Butler-Volmer relationship: 



2. Biosensor Design and Interfacing  55

O(s)

R(s)

ne-

O(∞)

R(∞)Electrode surface

Mass transport to 
surface (Fick’s Law)

Electron transfer 
at surface

Electrons from 
external circuit

Fluxes must balance ∴ current ∝ flux

Electron transfer reactions

O(s)

R(s)

ne-

O(∞)

R(∞)Electrode surface

Mass transport to 
surface (Fick’s Law)

Electron transfer 
at surface

Electrons from 
external circuit

Fluxes must balance ∴ current ∝ flux

Electron transfer reactions

O(s)

R(s)

ne-

O(∞)

R(∞)Electrode surface

Mass transport to 
surface (Fick’s Law)

Electron transfer 
at surface

Electrons from 
external circuit

Fluxes must balance ∴ current ∝ flux

Electron transfer reactions

Figure 2.5 Electron-transfer reaction mechanisms. 

exphet het

nFk k
RT

α η°= − (2.11)

where hetk ° is the heterogeneous rate constant at the standard electrode potential. α
is the symmetry factor, giving the position of the potential energy maximum in the 
reaction coordinate space. The significance of these variables will be discussed fur-
ther in 2.6. The key point to note here is the exponential dependence of the rate 
constant on the overpotential, i.e. the rate of reaction and thus the current flowing 
can easily be altered by many orders of magnitude merely by altering the applied 
overpotential. There are therefore at least two steps involved in every electrode re-
action:  

(a)  Mass transport which is described by Fick’s laws and depends on 
the concentration gradient at the electrode surface, and 

(b)  Electron transfer which depends on the overpotential.  

The relative rates of these two steps dictate the form of the current-voltage relation-
ship in Figure 2.4. In region I, the electron transfer step is the slowest, rate deter-
mining step of the reaction. The observed current in this region depends exponen-
tially on the overpotential. The overall rate of reaction, and therefore the current, is 
under charge transfer control. In region III, the electron transfer is occurring so rap-
idly that the slowest step in the overall reaction is mass transport. In region II, the 
region of mixed control, the rates of electron transfer and mass transport are occur-
ring at broadly comparable rates. Region III is the region of analytical utility and 
the current is independent of the applied potential, leading to the diffusion limited 
current id. Since electron transfer is so fast, the effective surface concentration of 
the reacting species is zero and the diffusional flux, and thus the current flow, is di-
rectly proportional to bulk concentration. The shape of the current voltage curve is 
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characteristic of the analyte and electrode material and can be used to identify the 
analyte. However, this identification is largely empirical. We have been developing 
more rigorous approaches to analyte identification using nonlinear time series 
analysis.

2.2.2.1 Steady State Techniques 

The simplest mode of operation is where the applied potential is held at a value 
such that the current is diffusion-limited. This is known as amperometry. As soon 
as the electrode reaction begins, since it is confined to the electrode surface, the re-
gion of solution close to the electrode will become depleted, as illustrated in Figure 
2.6. This depleted region, known as the Nernst layer, needs to be stabilised against 
convection arising from density gradients and thermal effects. Three stratagems 
have been developed: 

(a)  Impose a well characterised flow regime which overwhelms natural 
convection.

(b)  Place a semipermeable membrane over the electrode thus prevent-
ing bulk convection.  

(c) Use very small electrodes (microelectrodes or ultramicroelec-
trodes), such that the Nernst layer is considerably smaller than any 
hydrodynamic boundary layer caused by natural convection.  

Strategy a) whilst being of great utility in laboratory based instruments or off-
line flow injection analysis is clearly not suitable for most clinical or physiological 
applications. Strategy b) is used in the almost ubiquitous Clark oxygen electrode. 
The membrane is selected such that its permeability to the analyte is several orders 
of magnitude lower than the solution. Bulk concentration is thus maintained up to 
the sensor surface. The membrane offers the additional advantage of preventing 
fouling of the electrode by surface active matrix components. The use of microelec-
trode elements is particularly attractive since they can be easily fabricated in the 
laboratory and can be fabricated using conventional CMOS processes. Insensitivity 
to flow can usually be achieved in aqueous systems when the characteristic dimen-
sion is less than 50µm. Shape is important because the diffusion field must con-
verge. The most practical shapes are discs, made by embedding microwires in insu-
lator; microrings made by vacuum deposition on to an insulating former or 
microhemispheres by mercury electrodeposition on to iridium microdiscs. 

The steady state diffusion limited current id at a microdisc electrode is given by: 

4di nFcDa= (2.12)

where c is the bulk concentration, D is the diffusion coefficient and a is the elec-
trode radius. Similar expressions are available for different electrode geometries, 
though all show a linear relationship with characteristic length (radius for a disc)       
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Figure 2.6 The concentration profile close to the electrode surface. 

and are linear in concentration and diffusion coefficient. The dependence on diffu-
sion coefficient is clearly a complication in biological systems since this is not gen-
erally known. However, it can often be determined directly by chronoamperometry 
(see below) and in any case, this expression is useful to confirm electrode geometry 
in well characterised solution. 

For a microdisc electrode in the steady state, although the diffusion field asymp-
totically approaches bulk concentrations only at infinity, in practice, the bulk of the 
field is confined in a hemisphere six times the radius of the electrode. This allows 
explicit control of the spatial resolution of the sensor and requires the designer to 
decide the important length scale, whether cell, capillary or region of tissue, in ad-
vance of the experiment. Since microelectrodes can be fabricated down to 100nm, 
and exceptionally much smaller using nanoparticle templating, this gives electro-
chemical sensors sub cellular resolution in real time. 

Steady state techniques have the fastest response times of all electrochemical 
techniques. For electrodes without membranes, the response time is essentially in-
stantaneous since it depends primarily on the diffusion characteristics of the test 
medium. Electron transfer takes place on the femtosecond time scale. It is this com-
bination of excellent temporal resolution and unparalleled and tunable spatial reso-
lution which has allowed direct measurement of single vesicles of neurotransmitters 
to be quantified in real time, and an example is detailed below. In summary, steady 
state techniques offer the advantages of simple instrumentation and analytical rela-
tionships between the measured current and analyte concentration. 

2.2.2.2 A Representative Application: The Measurement of Neurotransmitters 
in Intact Neuronal Systems 

We have an interest in examining the effects of aging on neurotransmitter release. 
Neurotransmitters are chemical messengers which are released from a pre-synaptic 
neuron and diffuse across the synapse where another action potential is triggered. 
There are three types of transmitter: gaseous e.g. nitric oxide, amino acids and pep-
tides such as glutamate, or myomodulin and monoamines such as serotonin and 
noradrenaline. Peptides and monoamines are released through vesicles, subcellular 
structures originating in the Golgi which fuse with the cell membrane and release 
their contents. Vesicles contain typically 20,000-50,000 molecules and the release 
is over in typically 5ms. This presents a challenging measurement requirement –
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low concentrations, highly localised release, and a requirement for excellent tempo-
ral resolution. 

We have measured serotonin release from an identified neuron in the water 
snail, Lymnea stagnalis using carbon fibre microelectrodes fabricated as follows: 

• Clean a 7µm carbon fibre by sonication in acetone followed by de-
ionised water. 

• Place the fibre inside a pulled glass capillary (where the end as been 
polished to facilitate insertion). This may be aided by using a capil-
lary filled with ethanol. 

• Once placed inside the capillary allow approximately 2mm of the 
carbon fibre to protrude from the end of the capillary and seal using 
epoxy resin by capillary action. The resin takes 72 hours to set and 
cure at room temperature. 

• Contact using a silver wire via Woods metal.  
• The exposed shanks of the protruding tip are then insulated using 

electrophoretic paint. To coat the carbon fibre a voltage of 2V was 
applied for one minute using a platinum coil as the cathode and the 
carbon fibre electrode as the anode. Following coating, the elec-
trode was removed by micromanuipulator and cured. The anodic 
paint was then cured after each coating for twenty minutes at 
160ºC. This process was repeated four more times and the voltage 
was increased to 3V, 4V, 6V and 8V for each subsequent coating. 
The carbon fibre was then cut using a scalpel to expose a carbon fi-
bre disc electrode.  

The finished sensors and a schematic of their construction are shown in Figure 2.7. 
The structure of serotonin is given below in Figure 2.8. When a carbon fibre 

electrode is polarised to +0.7 V versus an Ag/AgCl electrode, it is oxidised at the 
hydroxyl group to a quinonoid moiety in a two electron reaction at a rate which is 
proportional to its concentration. 

The serotonin sensors were pressed against the cell surface and spontaneous ve-
sicular release was recorded. Typical responses are shown in Figure 2.9. The indi-
vidual vesicular events are analysed for peak height, peak area (which can be re-
lated to the total number of molecules detected) and the time constant of decay, 
which is related to re-uptake by the pre-synaptic cell. The resolution of these re-
cordings has been good enough for us to detect changes in neurotransmitter re-
uptake kinetics as a function of age. 

2.2.2.3 Transient Techniques 

Despite the excellent spatial and temporal resolution displayed by steady state volt-
ammetry, there are a number of disadvantages for some applications. Analyte con-
sumption is directly proportional to current. This can be a major disadvantage in
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Figure 2.7 Schematic and photographs of serotonin sensors. (See colour insert.)
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Figure 2.8 The structure of serotonin. 

oxygen measurement where the biological problems of greatest interest occur is tis-
sues where oxygen concentration is low. Intermittent operation can provide a solu-
tion. The limits of detection and sensitivity of the sensors are frequently limited by 
noise. When the currents are small, as is necessarily the case in microelectrode 
measurements (sub-nanoampere currents are typical), the sensitivity may not be 
adequate. Operating the sensor with a non-steady potential increases the sensitivity 
by sampling the current when the concentration gradient at the surface is steeper. 
Operating the sensor in the steady state also raises issues of selectivity. Any mole-
cule which can be electrolysed at or below the applied potential will contribute to

5 1 mm
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Figure 2.9 Vesicular release of serotonin: (a) Sample trace showing sponta-
neous vesicular release from the cell body of the serotoninergic neuron from 
Lymnaea stagnalis; and (b) Schematic of a vesicular event defining peak cur-
rent (Ipeak), time constant of decay (which will be expressed as  from the 
mathematical equation) and the charge (Q).

the current. This is not necessarily a problem in an anatomically well characterised 
system, but for many applications, easily oxidisable high concentration components 
of most biological fluids such as ascorbate (vitamin C) or uric acid present serious 
problems. Potential programming can be used to confer additional selectivity. Fi-
nally, electrode fouling (which we will examine below) can sometimes be over-
come by pulsing the electrode potential either to reduce interactions or oxidise any 
films formed on the electrode surface. 

Next, we will consider the most important transient techniques, chronoam-
perometry, cyclic voltammetry and square wave voltammetry. However, whilst 
these techniques undoubtedly overcome some problems, they introduce others, 
most notably capacitive charging. 

When a time-varying potential is applied to an electrode, the faradaic current is 
accompanied by a charging current. This is not simply that due to the leads and in-
strumentation – the electrical double layer associated with the electrode-electrolyte 
interface shows capacitor-like behaviour. On the solution side of the interface there 
is an excess of counter ions to balance the charge on the electrode surface. The di-
polar water molecules are also preferentially oriented in the field. When the elec-
trode potential is changed, electrical work must be done to provide the appropriate 
ion atmosphere and re-orientate the dipoles. This is manifest as a charging current 
which decays to zero in the steady state. The capacitance of a noble metal electrode 
is of the order of 20-30µF cm-2. Since capacitance scales with area, this problem is 
less severe with smaller electrodes. Many of the more sophisticated and sensitive 
transient techniques have been designed to minimise the influence of double layer 
charging.

The simplest transient technique is chronamperometry. The electrode potential 
is instantaneously changed from one at which no electrolysis occurs to one suffi-
cient to generate a diffusion limited current. Intermittent operation decreases ana-
lyte consumption. 
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Figure 2.10 Chronoamperometry. 

The resulting faradaic current rises instantaneously to infinity (or as fast and as 
high as the instrumentation will allow) as the surface concentration falls to zero. As 
the concentration gradient relaxes into the solution, the current decays as t-1/2. For a 
large electrode, the current is given by the Cottrell equation which predicts that the 
current should approach zero at infinite times. For a disc shaped microelectrode the 
current asymptotes to πnFcDa for short times (where 4Dt/a2 <1) and to 4nFcDa for 
long times [25] as the diffusion to the electrode edge increasingly dominates. The 
principal advantage of chronomaperometry is that since expressions for slope and 
intercept on the i versus t-1/2 plot contain both diffusion coefficient and concentra-
tion, both of these terms can be obtained from a single experiment. This is a great 
convenience in biological systems since diffusion coefficient is generally unknown 
and likely to be different from a calibration solution. Furthermore, the diffusion co-
efficient is of intrinsic interest and can reflect tissue hydration. We have used this 
technique to quantify the effects of tissue hydration in the intervertebral disc (which 
is affected by mechanical loading) on oxygen transport in the tissue [26]. A further 
potential benefit is that it may be possible to recondition the electrode surface by 
applying a cleaning pulse between measurements. 

However, the early parts of the current transient are distorted by capacitive 
charging. It is essential to establish the RC time constant for charging in a blank so-
lution and only analyse the current for times longer than 3RC but less than 4Dt/a2.
This method also does not overcome the principal disadvantage of steady state 
techniques which is that of unknown selectivity in complex samples. Additionally, 
the sharp edge of the stimulating voltage can provoke action potentials in neurons. 
These disadvantages are to some extent overcome by other transient techniques and 
with modern instrumentation, there is no requirement to use only one technique. 

More sophisticated transient techniques are not generally suitable for implemen-
tation is sensors, though can be useful for characterising both the sensor and the 
electrode reaction. Cyclic voltammetry is a particularly useful “first look” technique 
but, with the exception of neurotransmitter research [27, 28] has not been widely 
used in biosensing applications due to the relatively high limits of detection. Differ-
ential pulse voltammetry and square wave voltammetry both involve modulation of 
a ramp or staircase respectively with a train of square pulses. By judiciously select-
ing the sampling period, the effects of double layer capacitance can be substantially 
reduced. Both of these techniques offer limits of detection down to the nanomolar 
but are not continuous and are difficult to implement in the clinical setting. The in-
terested reader is referred to standard electrochemistry texts for further details [62]. 
In practice, AC voltammetry is a promising method that can be easily implemented 
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using computer controlled instrumentation and is amenable to sophisticated signal 
processing. This is dealt with in some detail in Section 2.4 below. 

2.2.2.4 Engineering Electrode Surfaces for Selectivity: Chemically Modified 
Electrodes and Biosensors 

There has been persistent doubt about the ability of electrochemical sensors to per-
form qualitative analysis in vivo. The reason for this is clear – the technique em-
ploys a relatively non-specific electroanalytical method in a matrix that is very 
complex [29]. The following approaches to improve selectivity are discussed: (a)
voltammetric techniques, (b) independent chemical analysis, (c) anatomical speci-
ficity, (d) physiological evidence, and (e) pharmacological tests.  

(a) Each compound will provide a characteristic voltammetric curve. 
The shape and position of this curve will depend on the chemical 
structure of the substance and that of the electrode used. In recent 
years, Wightman’s group have developed colour plots of the Fast-
Scan Cyclic Voltammetry (FSCV) data analysis which have simpli-
fied the analysis of results and allowed for the use of time as a third 
variable for assessment [30]. This data processing has been further 
advanced with the use of Principle Component Analysis (PCA) to 
analyse unresolved complex signals. The application of these two 
pattern recognition techniques to electrochemical methods has al-
lowed adrenaline to be resolved from noradrenaline release from 
chromaffin cells [31]. 

(b) After voltammetric measurements are carried out results are com-
pared to those obtained using microdialysis techniques followed by 
offline analysis. 

(c) The chemical composition of many cells, tissue and brain regions 
are well known. To complement the voltammetric data the specific-
ity of the biological system can be used. Simulation can be used to 
allow release of specific compounds within a given region. 

(d) In many biological systems, the mode of operation depends 
strongly upon a region or network. Using physical lesions, the cor-
responding loss of cells will diminished the response from the cell 
that measurements are being obtained from. This can help to con-
firm that the response that is being measured using the biological 
preparation can be eliminated. 

(e) Pharmacological agents on their own can be used as the sole means 
of carrying out identification of substances. For example during the 
measurement of vasodilator nitric oxide from Human Umbilical 
Vein Endothelial Cells (HUVEC), the stimulated response can be 
inhibited using a NOS inhibitor such as NG-Nitro-L-Arginine-
Methyl Ester Hydrochloride (L-NAME) or L–N -Nitro-Arginine
(L-NNA). This will compete with the arginine to prevent the pro-
duction of citrulline and nitric oxide. However another means of 
diminishing the response of nitric oxide at the electrode is to use 2-
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Phenyl-4,4,5,5-Tetramethyl-Imidazoline-1-Oxyl 3-Oxide (PTIO), 
which is able to quench the nitric oxide once it was released. 

Clearly, many of the approaches outlined above, whilst appropriate for animal 
experimentation or during the development, could not be employed in routine 
monitoring. Additional selectivity, over that achieved by potential control, may be 
attained by engineering the electrode surface. The major approaches to this are out-
lined below: 

Gas Selective Membranes 

If the target analyte is a neutral molecule and the interferent is ionic, then interpos-
ing a gas permeable membrane such as PTFE (Teflon) between the test solution and 
the sensor will prevent the ionic species reaching the working electrode. The condi-
tion for this is that the effective pore size must be below two diameters of a water 
molecule.  Ions can go nowhere without their accompanying water molecules that 
solvate them. A complication with this strategy is that the counter and reference 
electrode must also be behind the membrane since ions are also the charge carriers 
between the counter and working electrodes. This principle was first reduced to 
practice by Leland Clark for what is now universally known as the Clark O2 elec-
trode. The Clark electrode has been the method of choice for determining blood 
oxygenation since the late 1950s. 

Selective Binding and Catalysis 

Should the target analyte be oxidised or reduced at a similar potential to an interfer-
ing species, exploiting selective chemistry of the target species can sometimes be 
successful. A typical example of this is the nitric oxide sensor first reported by Ma-
linski [32] who used a Ni(II)(porphyrin) modified electrode surface to reduce the 
operating potential for oxidation of NO. 

Amperometric Enzyme Electrodes 

The key idea is to exploit the extraordinary selectivity of enzymes which evolved 
over millions of years of natural selection. In these systems, there is no direct oxi-
dation of the target analyte by the electrode. The analyte reacts catalytically with 
the enzyme to produce a reaction product which is then detected. The so-called 
“first generation” biosensors operate on this basis, the first reported example of 
which for the determination of glucose was published by Updike and Hicks in 1967 
[33]. This approach was commercialised successfully by Yellow Springs Instru-
ments. The underlying chemistry is shown below: 

2 2 2O H OGODGlucose gluconolactoneδ+ ⎯⎯⎯→ − +

where GOD represents the enzyme glucose oxidase from Aspergilllus niger. The 
hydrogen peroxide (H2O2) is detected by oxidation on a platinum electrode held at 



64    Body Sensor Networks 

+0.65V. The enzyme is immobilised by cross linking with glutaraldehyde or by an 
electropolymerised film [34] or even by simple adsorption. An even simpler strat-
egy can be employed where the working electrode is made of a conducting compos-
ite material. With the addition of suitable stabilisers such as polyethlyeneimine or 
dithiothreitol, enzymes can be incorporated into the bulk of the conducting carbon-
epoxy composite to provide a cheap, extrudable or printable biosensor [35]. There 
are several comprehensive reviews of enzyme immobilisation techniques [36]. An 
ingenious molecular level assembly has been described by Wilner [37] where the 
flavin redox centre is first immobilised followed by spontaneous self-assembly of 
the apoenzyme on to its co-factor. 

The major problem with the first generation biosensors is that there are several 
common interferents which are also oxidised at +0.65V, notably uric acid, ascor-
bate and acetaminophen. An alternative strategy was adopted for the second genera-
tion biosensors where it was recognised that the oxygen in the above reaction is in 
fact regenerating the enzyme. This is shown schematically below: 
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Product M(ox)

M(red)Enzyme (Ox)

Enzyme (red) ne-

1 2 3 4 5
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Figure 2.11 Schematic of a second generation biosensor. 

In Figure 2.11, the electrode is on the right hand side of the diagram, the test so-
lution on the left. Substrate diffuses from solution (Step 1) through a membrane 
(where employed) (Step 2) to be oxidised by the enzyme (Step 3). The enzyme 
must be reduced in this process and needs to be regenerated by oxidation in Step 4 
above. The mediator is then regenerated in turn by oxidation at the electrode surface 
(Step 5). For a concentration sensor, Step 1 or Step 2 needs to be the rate determin-
ing step. This ensures that the slope of calibration is not affected if the enzyme de-
natures slightly or loses activity. 

The mediator species can be chosen so that it undergoes fast reversible reaction 
kinetics at a potential where no other redox species are expected to react. Mediators 
which have been employed for this purpose include benzoquinone, the ferricyanide 
ion and various derivatives of the iron(II) compound ferrocene. The ethanolamine 
derivative of ferrocene is the mediator in the enormously commercially successful 
biosensor for glucose originally developed by Medisense, the ExacTech system. 
This concept was originally described by Cass et al [38] using dimethyl ferrocene 
as a mediator. In this device, the enzyme was chemically immobilised on the sur-
face of a screen-printed carbon electrode. 

It would obviously be a lot simpler if the enzyme could be persuaded to react di-
rectly at the electrode surface. This cannot generally be achieved because the elec-
tron conduction path between the electrode surface and the redox centre of the en-
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zyme is too great for there to be an appreciable tunnelling current. Third generation 
biosensors involve no directly added mediator species. There have been two 
broadly successful approaches – using electrodes made of low dimensional con-
ducting charge transfer salts of Tetracyanoquinodimethane (TCNQ), and redox 
wired enzymes. The former strategy was first described by Kulys and developed by 
Albery and others, the most successful compound being the charge transfer salt of 
TCNQ and Tetrathiafulvalene (TTF). 

The mechanism was the subject of heated dispute for some time, it being be-
lieved that direct electron transfer was occurring. However, Bartlett was able to 
show that the TTF insinuates its way into the enzyme structure [39] to enable elec-
tronic conduction. A detailed mechanism for electrodes made from these materials 
has more recently been published by Lennox [40] showing that the mechanism is 
best understood as a form of heterogeneous mediation, where the mediator species 
is not soluble in water, but is soluble in the hydrophobic regions of the enzyme. 
Electrodes based on this technology have been used successfully for long-term 
studies of the glucose metabolism in rats’ brains over ten days [41]. 
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Figure 2.12 The structure of TCNQ and TTF. 

Wired enzymes tackle the problem more directly. Reactive sites in the protein 
structure are identified (or created by protein engineering) and reacted with redox 
active groups such as ferrocene derivatives, an approach now of some commercial 
significance and originally pioneered by Adam Heller’s group [42]. This technol-
ogy is now being applied with some success to power generation in biofuel cells by 
Heller [43]. 

2.3 Instrumentation 

2.3.1 Potentiometry 

Potentiometric devices require only a high impedance high resolution voltmeter. 
There are many commercially available devices, indeed most high-end DVMs have 
adequate performance for many applications. Glass membrane electrodes and PVC 
membrane ISEs require input impedance in the range of 1GΩ. ISFETs and metal-
metal oxide sensors can be made using CMOS compatible processes and it is likely 
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in the future that these devices will be commercially produced with the requisite 
signal conditioning circuitry integrated with the sensor. 

2.3.2 Amperometry and Voltammetry 

Steady state amperometry requires a stable voltage source which can respond rap-
idly to a current load that may vary by many orders of magnitude. Most readout de-
vices (chart recorders, oscilloscopes, analogue-to-digital converters) require the 
signal to be in the form of a voltage, so some sort of current to voltage conversion 
is required. In the case of low currents, it may be possible to use a simple two elec-
trode set-up where the counter electrode also serves as a reference electrode. How-
ever, passing any current through the reference electrode can reduce sensor lifetime 
and if an array of electrodes is to be used, the combined sensor current could cause 
significant current flow and introduce hysteresis into the system. In these cases, a 
three electrode set up is required. In this case, the electrode potential with respect to 
the reference electrode is maintained by a control amplifier and a third electrode is 
introduced to provide a current path. This is shown schematically in Figure 2.13 be-
low. 
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Figure 2.13 Schematic of the functions required of instrumentation for volt-
ammetry and potentiometry.

The functions outlined in Figure 2.13 can be implemented using simple opera-
tional amplifier circuits. Usually the working electrode (sensor) is held at ground or 
virtual ground. The potential is applied through a control amplifier to which the ref-
erence electrode and counter electrode are connected. A simple circuit for achieving 
this function, based on the voltage follower circuit is shown in Figure 2.14. 
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Figure 2.14 A potentiostat control amplifier based on the voltage follower circuit. 

Whilst this circuit fulfils the essential functions of the potentiostat in that the 
reference electrode passes no current, it is not easily adapted for transient tech-
niques where the voltage offset may need to be modulated with a pulse train or an 
AC voltage perturbation. In order to implement this useful function, an op-amp ad-
der circuit can be used: 
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Figure 2.15 An adder type potentiostat. 

In the circuit shown in Figure 2.15, the voltage applied to the electrochemical 
cell (or complete sensor) is given by the sum of the inputs to the three resistors (R1,
R2, R3), if they are of equal value. A disadvantage is that the reference electrode is 
now loaded by the resistor, Rref. This can easily be overcome by imposing a voltage 
follower into that limb of the circuit. The complete control amplifier function can 
now be implemented using a monolithic dual op-amp chip. 

Current to voltage conversion is commonly achieved in two ways: a) passing 
the current through a high precision measuring resistor and then using standard 
voltage amplifier circuits to provide adequate gain for interfacing to a chart recorder 
or analogue-to-digital conversion, and b) a current follower. This second circuit has 
the advantage of holding the working electrode at virtual earth. The measuring re-
sistor approach has the advantage of speed and low noise, but the working electrode 
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takes a variable potential above ground. The current follower circuit maintains the 
working electrode at virtual earth which reduces the capacitance of the working 
electrode lead (the central conductor and the shield will be at the same potential) 
and minimises leakage currents, a major consideration when the current can be as 
low as picoamperes. 

More recently [44], a new approach to current to voltage conversion has been 
employed in patch clamp amplifiers for neurophysiology. Developed by Axon, the 
input stage is a current integrator, thus reducing the effect of random noise. Clearly, 
the integrator needs to be reset periodically and the complete circuit is considerably 
more sophisticated and, unlike the circuits outlined above, are beyond the means of 
most laboratories to implement in homemade devices. 

Electromagnetic pick-up, principally 50Hz or 60Hz mains noise, is the major 
limitation on both sensitivity and limit of detection. Regardless of the circuit de-
sign, great care needs to be taken over earthing and connections. It is essential to 
have only a single earth point with all shields connected in a star formation.  Minia-
turisation of circuits and using on-board connectors and sockets reduces the length 
of interconnects and their inevitable antenna effect. 

2.3.3 Reference and Counter Electrodes 

Counter electrodes are most commonly made from inert noble metal wire or gauze, 
usually platinum. However, stainless steel (306SL grade) has been used with some 
success in brain voltammetry experiments. Whilst the working electrode perform-
ance should be independent of the counter electrode reaction, and this is easy to 
achieve “in the pot”, the nature and location of the counter electrode merits careful 
consideration in physiological application. The counter electrode is there simply to 
provide a current path, but no sustained current can flow without electrolysis. When 
the working electrode is held at a positive potential, the counter electrode reaction is 
likely to be hydrogen generation, leading to a local rise in tissue pH in the vicinity 
of the counter electrode. Similarly, when the working electrode is held at a negative 
potential and passing a reduction current, the counter electrode reaction will cause a 
decrease in the local pH. It is generally acceptable to place the counter electrode 
some distance away from the working electrode since the resulting uneven potential 
field is unlikely to be important and in any case, with microelectrode sensors, the 
field variation will not be sensed at the working electrode. 

The agreed international reference electrode is the SHE which has arbitrarily 
been assigned a potential of 0V. Any hydrogen electrode is temperamental and dif-
ficult to set up and these days are rarely seen outside the undergraduate physical 
chemistry laboratory. Fortunately, several suitable alternatives exist, the most prac-
tical of which is the silver-silver chloride electrode consisting of a silver wire on 
which has been deposited a thin film of silver chloride, either by anodisation or 
sputtering. The potential drop between the hook-up wire and the test solution is 
fixed, provided the chloride ion concentration remains unaltered. This is extremely 
convenient in physiological applications since chloride ion concentrations are 
tightly regulated. Since performance depends on the chemical composition of the 
surface, reference electrodes are particularly prone to contamination by adsorption 
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of surface active tissue components. We have had some success with a design 
which uses an immobilised salt bridge solution to separate the silver chloride from 
the experimental subject [26] the construction of which is summarised below: 

• Carefully straighten about 5cm of 125µm diameter silver wire 
(99.995+). 

• Clean the wire by sequential sonication in chloroform, acetone and 
deionised water. 

• Chloridise about 2cm of the wire by making it the anode in a cell 
using a silver or platinum counter electrode in 0.1M HCl. The cur-
rent density should be 0.4mA cm-2.

• The electrode should then be soaked in deionised water for at least 
twenty-four hours.  

• Place the wire carefully inside about 4cm of fine bore plastic tubing 
so that the chloridised end is just within the tubing. 

• Dip the assembly into a hot solution of NaCl (3mol dm-3) and 3% 
(w/w) agar and allow to fill by capillary action. Allow to cool until 
the solution has gelled. Glue the silver wire to the top of the tubing 
to provide strain relief. 

• Further mechanical stability can be achieved by gluing the assem-
bly into hypodermic tubing. 

• Test the finished electrode against a reliable standard reference 
electrode. The potential should be within a few millivolts of 
+0.197V vs SHE.  

Similar strategies can be adopted for integrated sensors where the reference elec-
trode can be constructed by chloridising a silver plated pin or pad close to the work-
ing electrode surface. Additional information about circuits and sensor ancillaries, 
complete with recipes, has been published by Cass [45]. 

2.4 Photoelectrochemistry and Spectroelectrochemistry 

A new type of electrochemical device, the Micro-Optical Ring Electrode, or MORE 
was introduced in 1996 [46]. It consists of a fibre optic light guide on which a thin 
film of gold has been deposited as shown in Figure 2.16. The gold is anchored by 
chemical bonding to thiol terminated silyl groups to obviate the need for a chro-
mium underlayer. The idea is to provide intimate relationship between a light 
source and the electrode surface which can, unlike optically transparent electrodes, 
be readily renewed by conventional lapping processes. There are some redox reac-
tions which take place more rapidly if the reactant is in a photoexcited state. 
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Figure 2.16 A schematic of the MORE device. 

If the electrode potential is poised between the energy of Highest Occupied Mo-
lecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), 
the molecule can undergo neither oxidation nor reduction since the HOMO is full 
and the LUMO is of a higher energy. Once the molecule become photoexcited, 
promotion of an electron to the LUMO creates a vacancy in the former HOMO and 
an electron which can be removed from the former LUMO as seen in Figure 2.17. 
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Figure 2.17 How photochemical generation of an excited triplet state can al-
low electrochemistry to take place.

Proof of this principle was established in the oxidation of the dye, methylene 
blue. The advantage of this type of approach is twofold: a) previously inaccessible 
analytes may become redox active under illumination; and b) a background signal 
can be recorded in the dark before and after measurement to allow correction for 
drifting background current. An application for blood cyanide determination is cur-
rently under development in our laboratories. Cyanide in blood is bound to 
Methaemoglobin (MetHb) in red cells and not available for analysis. However, the 
MetHb-CN complex is photolabile and can be decomposed by light in the blue-near 
UV region. The liberated cyanide can then be determined by oxidation [47]. The 
complete device is shown in Figure 2.18. 
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Figure 2.18 The MORE electrode complete with light source. (See colour insert.) 

Heineman at the University of Cincinnati has also combined light with electro-
chemistry but in the opposite sense – to use the electrochemistry to modulate a 
spectroscopic signal [48]. The device is built on a microscope slide-sized light 
guide coated with an optically transparent electrode made of Indium-doped Tin Ox-
ide (ITO). This in turn is coated with a thin film which selectively absorbs the com-
pound of interest. The evanescent wave of light passing through the light guide by 
total internal reflection penetrates the electrode and goes into the film. Light emerg-
ing at the distal end of the light guide will show selective wavelength dependent in-
tensity where it has interacted with the analyte. If the analyte undergoes electron 
transfer and the reduced and oxidised forms show different spectra in the UV/vis 
spectrum, then the spectrum can be “chopped” by modulating the electrode poten-
tial. If light detection is then accomplished via a lock-in amplifier, limits of detec-
tion are dramatically lowered, in principle as low as 10-11mol dm-3 for favourable 
cases such as ruthenium tris(bipyridyl) and demonstrably down to sub micromolar 
concentrations in real solutions from nuclear waste. This entirely novel approach 
combining electrochemistry with spectroscopy offers selectivity from three sources: 
a) selective adsorption into the film; b) potential control from the ITO electrode; 
and c) wavelength from the spectroscopy. This additional control augurs well for 
application in complex media such as biological systems. 

2.5 Biocompatibility 

The attractions of electrochemical methods applied to clinical and biomedical 
measurement problems include continuous or repeated measurements of high tem-
poral or spatial resolution together with minimal invasion or tissue damage. How-
ever, problems can arise from the perspective of both sensor and subject. These are 
dealt with in turn, along with some strategies for overcoming them. 

2.5.1 Sensor Fouling 

Measurements over long periods of time are generally compromised by the instabil-
ity of the sensor. There is typically a fall in sensor current over time due to adsorp-
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tion of surface active tissue components. The role of surface topology has assumed 
a greater significance in recent years and been the subject of a recent review [49]. 
These processes may influence both the reactivity of the electrode (leading to loss 
of selectivity) and transport to the electrode surface. Membranes may overcome 
some of these problems but they introduce an additional process step into the sensor 
manufacture (and thus reduce reliability) and create the additional problem of 
membrane fouling where the membrane permeability falls as proteins and other tis-
sue macromolecules adsorb on the membrane. Some membranes may release plas-
ticisers into the tissue and there is always some doubt about membrane integrity on 
inserting the sensor into dense or tough tissue. There is no universal answer to these 
problems and there is a surprising dearth of hard information in the literature. We 
have shown [26] that for oxygen measurement on gold, the electrode reaction 
mechanism is not affected by adsorption of tissue components but that the effective 
electrode radius needs to be measured after exposure to tissue, as the electrode sur-
face area is substantially affected. For enzyme biosensors for glucose and lactate, 
we have successfully used very thin films of the biocompatible modifier, polycar-
boxybetaine to reduce the effects electrode fouling. This was demonstrated to be 
very effective in measurements in intervertebral discs [35]. Similar to the idea of us-
ing a membrane is the microdialysis electrode [50] where the sensor is encapsulated 
inside a microdialysis electrode. These have been used successfully to measure glu-
tamate in brains and are commercially available from Sycopel Ltd. 

Novel electrode materials may however provide another solution. Boron-doped 
diamond films made by chemical vapour deposition or plasma assisted chemical 
vapour deposition combine the many attractive properties – the chemical inertness, 
hardness and high thermal conductivity – of the native diamond with semiconductor 
or metallic conductivity. Those properties relevant to sensor design have been re-
cently reviewed [51]. Swain’s group has been working on producing novel boron-
doped diamond microelectrodes for biological measurements. Diamond is attractive 
for electroanalytical measurements in biological environments because of its a)
hard and lubricious nature which enables easy penetration into tissue with minimal 
peripheral damage; b) low and stable background current over a wide potential 
range as well as superb chemical and microstructural stability; c) low surface oxy-
gen content (when H-terminated) which leads to minimal change in the background 
current with variation in solution pH; and d) chemical inertness and a nonpolar, hy-
drophobic surface which renders it resistant to corrosion and molecular adsorption 
(i.e., fouling). It has also been claimed that diamond film electrodes show good bio-
compatibility [52] though it is probably too early to know if this is generally appli-
cable.

Another development from novel materials which shows promise for sensor de-
velopment is the use of nanostructured templated materials plated from lyotropic 
phases of surfactant solutions. This area has been pioneered by Bartlett and Attard 
[53]. Nanostructured materials can have fascinating electrical, magnetic and optical 
properties and can be prepared in the open laboratory without any of the capital ex-
pense and personnel commitments of clean room operation. For the purposes of 
biocompatibility however, the key property is a huge surface area, the vast bulk of 
which is confined to nanometer-sized pores and thus inaccessible to the surface ac-
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tive macromolecules responsible for much electrode fouling. The materials pro-
duced in this way so far include platinum and palladium. 

Finally, even if changes in sensor material, shape and surface texture do not 
provide a complete answer, there are gains to be had from using signal processing. 
Given the relative ease and low cost of microfabrication, it is relatively straightfor-
ward to build sensor arrays where the individually-addressable sensor elements are 
essentially sampling the same extracellular fluid or region of tissue. Given the mul-
tiple modes of sensor fouling and failure, it is unlikely that each sensor element will 
fail at exactly the same time. By using statistical tools such as principle component 
regression, outlying data points can be identified and eliminated before taking the 
mean or median value given by remaining, presumably functioning sensor ele-
ments. In this way, prolongation of sensor lifetime is virtually guaranteed with no 
advance in material science or sensor design. 

2.5.2 Tissue Damage 

Although the idea of tissue damage and occlusion of capillaries was first discussed 
by Silver [54] and Albanese [55] several decades ago, there has been remarkably 
little published on the invasiveness of electrode techniques. Two factors are in-
volved, mechanical and chemical disruption. The physical size of the sensor may be 
much bigger than the active area of the electrode causing distortion of the tissue and 
occlusion of blood vessels. It is almost impossible to avoid some aspects of these 
phenomena. We investigated the invasiveness of microelectrode measurements 
when measuring tissue perfusion and oxygenation in electrically stimulated skeletal 
muscle [56]. One important insight was the realisation that the sensor should be 
blunt and rounded rather than sharp, so that muscle fibres were nudged aside rather 
than sliced. We excised tissue after the electrode measurements were complete and 
stained and sectioned the tissue. The tissue slices were then examined by an inde-
pendent histologist, blind to the origin of the tissue and scored for extravasated neu-
trophils, bleeding and fibre damage. There was no significant difference between 
the tissue where the electrode was placed and control sections. This surprising re-
sult indicates that tissue measurements are rather less invasive than had been hith-
erto suspected. Figure 2.19 shows an H & E stained section of rabbit tibialis ante-
rior which had been subject to full tetanic contractions on a 10% duty cycle for over 
three hours. The electrode defect is at the centre of the picture, the red blobs being 
individual muscle cells. Tissue damage is clearly confined to one or two cells distal 
from the electrode tip. 

2.6 Novel Approaches to Handling Sensor Data 

Though there have been tremendous advances in computing power in the last two 
decades, these have not thus far been translated into significant advances in the 
processing of data for electrochemical sensors. In fact, computers have largely been 
used to emulate the traditional signal generator and X-Y chart recorder approaches 
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of half a century ago. Consequently it is not unusual to record 50,000 pairs of data 
points in a cyclic voltammetry experiment only to use two or three of these in the 
analysis, such as peak and half-peak potential and current. The analysis of this data 
then proceeds using the diagnostics developed by Nicholson and Shain in 1964 
[57]. More process-intensive, but based on the same necessarily simplified models, 
finite difference modelling is used to test the similarity of the experimental data to 
predictions based on model reaction schemes. A major barrier is the nonlinear na-
ture of electrochemical signals which strictly precludes the use of Fourier transform 
approaches. Whilst ad hoc modelling has undoubtedly been useful, it seems timely 
to apply some of the tools developed in other branches of engineering for time se-
ries analysis into electrochemistry. We have begun this process by applying the 
Hilbert transform to the study of immobilised redox species at the surface of elec-
trodes and are currently extending this work to include freely diffusing species. The 
aim of this work is to be able to deduce the thermodynamic (E°) kinetic (α, k0) and 
mass transport (D, concentration) parameters of electrochemically interrogated spe-
cies. The combination of the physico-chemical parameters ought to enable unambi-
guous identification and move electrochemistry away from a correlation-based ap-
proach to qualitative analysis and by altering the time scale of the experiment (by, 
for example chirping the frequency) resolve redox active species that would other-
wise overlap. A major advantage that is already manifested is that the capacitance 
can be removed as an offset rather than through background subtraction [58]. 

Figure 2.19 H and E stained rabbit muscle showing minimal tissue damage 
from an electrode.

In order to apply these techniques, we will however need to consider the under-
lying theory of electron transfer in more detail. Electrochemical dynamics can 
quantitatively be described through the Butler-Volmer (BV) kinetic equation. The 
BV kinetic equation for a simple one-electron electrochemical reaction (2.13), is 
given by (2.14): 

Electrode defect
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O e R+ ⇔ (2.13)

( ){ }( ) { }0 0exp 1 1 expfari ϑ κ α ξ θ κ αξ θ
τ

∂= = − − − −
∂

(2.14)

   
where ˆ/far fari I I=  is the faradaic current response, Re /d totalC Cθ =  the concentration 
of the reduced species on the electrode surface, 0 0

ˆk tκ =  the kinetic constant of the 
electrochemical reaction, ( )0

ˆ/E E Eξ = −  the voltage and α the electron transfer 
coefficient indicating the symmetry between the locally quasi-linearised Gibbs free 
energy parabolas of the reactant and the product on the reaction-coordinate [59]. All 
expressions have been normalised with respect to the following characteristic prop-
erties:

ˆ ˆ ˆˆ ˆ/ ,    t / ,   I= / tE RT F E v FA= = Γ    (2.15)

with R (8.314C V mol-1 K-1) being the universal gas constant, T (298K) the absolute 
temperature, F (96485.3C mol-1) the Faraday’s constant and v (V s-1) the DC scan 
rate. Equation (2.14) is often used to describe processes where the electrochemical 
species is immobilised on the electrode surface with surface area A (m2) and species 
surface concentration  (mol m-2) [60, 61]. 

In voltammetric experiments the investigator has the freedom to select the volt-
age perturbation to interrogate the electrochemical system under investigation. The 
selection of the voltage profile depends exclusively on the phenomena to be stud-
ied. In the past, a plethora of different waveforms has been utilised, such as poten-
tial-step, sawtooth, DC ramp, sinusoid or combinations of the previous [57]. One of 
the most significant questions to be asked when choosing the voltage perturbation 
is: what is the characteristic time-scale, in other words time-constant, of the phe-
nomena we would like to investigate? For decades, the main focus of voltammetric 
methodologies was studying quasi-stationary phenomena in the macroscale. Rapid 
advances in miniaturisation which made the manufacturing of cheap micro- and 
nanometre sensors possible have recently turned the focus towards exploration of 
transient phenomena occurring in the microscale [62, 63]. When interrogating fast 
electrochemical phenomena the characteristic time of the perturbation has to be 
short to provide the necessary time resolution to analyse such events. Voltammetric 
methods like Fast Scan Cyclic Voltammetry (FSCV) or large-amplitude/high-
frequency AC voltammetry have proven useful towards gaining insight in various 
systems where the analytes under investigation are present in low concentrations, 
acting within an active matrix or to simply measure their electrochemical behaviour 
[64-67]. The challenge with such short characteristic time perturbation methodolo-
gies lies in the interpretation of the current response signal. 

Many applications of fast voltammetric sensing are related to developing meth-
ods that allow the determination of kinetic and thermodynamic parameters through 
the use of the BV kinetic equation. As seen in (2.14), faradaic phenomena involve 
exponentially time dependent parameters and thus are highly nonlinear. Addition-
ally, other contributions like the capacitance response icap caused by the re-
organisation of the double-layer at the electrode interphase, described through 
(2.16), become substantial and have to be taken into account.  
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In (2.16), Cdl (C V-1 m-2) is the double layer capacitance. Often, it is realistic to 
assume that the overall current response of an electrochemical process i will be i = 
ifar + icap. Characteristic waveforms and current responses are shown in Figure 2.20.  

In order to develop a method to determine the kinetic parameters k0, α and the 
thermodynamic parameter E0 from the current output the effect of capacitance, icap,
has to be suppressed. To do so, empirical methods like baseline subtraction have 
been applied where the contribution of icap is simply subtracted from the data-set 
[68]. This reduces the robustness of the estimations when icap is significantly larger 
than ifar. A more recent approach has been the application of AC voltammetry, 
where the waveform is a superposition of a DC ramp and a high-frequency har-
monic oscillation, in combination with Fourier techniques like the Fast Fourier 
Transform (FFT). If icap is adequately described through (2.16) then it should mani-
fest itself only, or predominantly, on the fundamental harmonic in the Fourier space 
[69, 70]. On the other hand, using tools developed for periodic, stationary and linear 
data-sets, such as the FFT, becomes problematic when they are applied to data ob-
tained from highly nonlinear processes like the faradaic events described through 
(2.14). 

In general, a nonlinear process does not obey the principle of superposition, nor 
does it have the property of frequency-preservation [71]. A nonstationary signal 
processing technique that has emerged as an alternative tool for the analysis of 
nonlinear phenomena is the Hilbert Transform (HT) [72]: 

( ) ( ) ( ) ( ) ( ) ( ){ }2 2 expz i H i i H i jτ τ τ τ τ θ τ= + = + (2.17)

   
where z( ) is the analytic signal as defined by Gabor [73], i( ) is the current output, 
j is the imaginary number and H[i( )] is the HT of i( ). The right hand side in (2.17) 
is the same expression in polar coordinates and defines the instantaneous amplitude 
a( ) and instantaneous frequency f( ) with: 

( ) ( ) ( )2 2a i H iτ τ τ= + (2.18)
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Kiss and co-workers [74] applied the HT analysis to voltammetric time-series of 
a population of electrochemical oscillators in order to measure emerging coherence.
Anastassiou and co-workers were the first to combine large-amplitude/high-
frequency AC voltammetry with the Hilbert transform and pattern formation to de-
duce kinetic and thermodynamic parameters [58].  

Their analysis was based on the influence of the different parameters on the pat-
tern of a( ). The main advantage though of the HT was shown to be the minimisa-
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tion of the capacitance influence to an offset. In both a( ) and f( ) characteristic en-
velopes are formed from a large number of spikes. In Figure 2.21, a( ) of a typical 
AC voltammetry output simulation is shown as well as the influence of α  and k0
on the resulting patterns. E0 (in other literature defined as midway-potential E1/2) is 
determined through the location of the envelope peaks with respect to the DC ramp. 
Moreover, α is determined from the ratio between the envelope heights whereas k0
is estimated from the separation between the two characteristic envelopes. This 
analysis additionally provides a method to assess if the voltage perturbation is ade-
quate to accurately determine the characteristic properties of the process. Depend-
ing on the value of k0, the AC frequency of the voltage perturbation has to be in-
creased or not. Experimental datasets with the blue copper protein azurin 
immobilised on a paraffin-impregnated carbon electrode which could not be fully 
interpreted by other methodologies were interpreted using the HT-methodology and 
the determined parameters were in agreement with the open literature. 

Figure 2.20 The first row shows the voltage perturbation , on the left, and 
the calculated current response i, on the right, when applying CV (scan rate v
= 1V s-1). The faradaic events (ifar) are predominantly observed in the vicinity 
of  = 0 and the influence of capacitance (icap) is seen at the offset. The sec-
ond row shows the voltage perturbation  and the current response i for AC 
voltammetry that uses the excitation waveform from CV superimposed with 
a fast harmonic oscillation (oscillation amplitude Eampl = 0.2V and oscillation 
frequency f* = 100Hz). ifar as well as icap contributions are now observed 
through the envelope of the oscillations of i. The kinetic and thermodynamic 
parameters for both simulations are: k0 = 100 s-1,  = 0.40 and E0 = 0V. 
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In many cases, for instance in solutions, the species to be detected or analysed 
are moving freely in the vicinity of the electrode. The effect of mass transport has to 
be included in the analysis so as to extract information on kinetic, thermodynamic 
and mass-transport parameters in electrochemical reaction-diffusion processes in-
terrogated using large-amplitude/high-frequency AC voltammetry.  

Figure 2.21 In the top right, the instantaneous amplitude a vs  is shown after ap-
plying the HT and defining the analytic signal z( ) of the AC voltammetry current 
response i shown on the left. The effect of icap is minimised to an offset and we 
can concentrate on analysing the faradaic events. In the lower row the effect of 
and k0 is shown for three different cases: on the left for  = 0.40 (green),  = 0.45 
(red) and  = 0.50 (blue) whereas on the right for k0 = 10s-1 (green), k0 = 102s-1

(green) and k0 = 103s-1 (blue). While the offset remains the same for all calcula-
tions (icap is constant)  is shown to affect the ratio between envelope peak 
heights and k0 the envelope peak separation.  (See colour insert.)

Engblom et al [75] and Gavaghan et al [76] applied analytical and numerical 
methods to calculate voltammetric responses in large-amplitude/high-frequency AC 
voltammetry. In their work, linear diffusion was the governing process and electro-
chemical reaction appeared as a boundary condition. The authors used FFT for the 
analysis of the output signal and observed that for high frequencies the kinetic ef-
fects manifest themselves in the higher harmonics of the AC spectrum. It has to be 
mentioned that these attempts much more aimed at showing differences between 
simulations with different physical parameters and did not include methods to de-
duce these parameters from the current output. A methodology based on the FFT 
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for developing simple protocols to estimate various parameters of an electrochemi-
cal process was recently presented by Sher et al [77] A heuristic approach for data 
analysis was utilised to deduce mechanistic information that can be associated with 
reversible or quasi-reversible electrode processes. The authors investigated the im-
pact of various parameters on the fundamental and higher harmonics and proposed 
a strategy of extracting similar information from experimental data through a self-
correcting algorithm. 

When studying a voltammetric diffusion-reaction process with the boundary 
condition being (2.14) the same principles regarding nonlinearity and nonstationar-
ity apply as for the surface immobilised case. Therefore, FFT has the same disad-
vantages and its use on such data-sets can prove problematic. Moreover, one has to 
keep in mind that diffusion-reaction processes, except of the increase in parameter 
space due to the spatial coordinate, can illustrate very complex, and under specific 
conditions even chaotic, dynamics [78, 79]. As shown in Figure 2.22, even if the 
current response of a simulated diffusion-reaction voltammogram has obvious simi-
larities with the surface adsorbed case the underlying dynamics are totally different.

Figure 2.22 In the top left, we show the voltage perturbation and in the top 
right the simulated spatiotemporal dynamics (normalised quantities). We ob-
serve that near  = 0 there are large variations in concentration u, especially 
near the electrode surface. We also observe the effect of diffusion: for in-
creasing  the effect of the u-fluctuations is propagated far from the electrode 
surface. At the bottom left, the current response i = ifar + icap is shown that is 
very similar to the surface-confined case shown in Figure 2.20. At the bottom 
right, the HT-analysis once more minimises capacitance effects and desig-
nates kinetic and thermodynamic effects (for the simulation shown k0 = 10-3

ms-1,  = 0.40, E0 = 0 V and D = 10-9m2s-1). (See colour insert.)
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The analysis of characteristic patterns that could lead to the determination of the 
underlying physical parameters using AC voltammetry has recently been attempted 
[80]. 

From the previous discussion, it becomes obvious that fast voltammetric sensing 
is a very vibrant field of research, both from the experimental as well as from the 
methodology point of view. When considering the voltage perturbation, the relation 
between waveform characteristics and specific process parameters remains unrav-
elled and extremely empirical. This applies especially for perturbation waveforms 
that interrogate the process on different time-scales like AC voltammetry. Intuition 
states that the fast characteristics of the waveform, like the high-frequency har-
monic oscillation, should address the rapid kinetic processes whereas the slower 
characteristic, like the DC ramp, can cater for the slower diffusive process. How-
ever, there has not been a strict definition in terms of waveform parameters for des-
ignating an algorithm to examine more effectively the underlying processes. Such 
knowledge would allow new and more versatile voltage perturbation protocols to be 
designed, for instance waveforms with time-dependent scan rate, amplitude and 
frequency (chirps). 

The interpretation of fast voltammetric methods has also drawn considerable at-
tention in the recent past. However, more effective methods of a) suppressing sig-
nal contributions from other processes besides the faradaic, and b) interpreting the 
faradaic output especially from more complicated waveforms and kinetic mecha-
nisms are needed. The HT analysis has shown to adequately minimise the effect of 
capacitance. Other non-faradaic contributions like solution resistance could be ad-
dressed via other signal processing methods which are adequate to analyse nonsta-
tionary data-sets and could provide even more powerful electroanalytical tools. For 
instance, methods like the empirical mode decomposition have been applied in the 
past to monitor nonlinear processes which occur on different time-scales could also 
provide novel insights in voltammetric datasets [81-83]. Moreover, wavelet trans-
forms or neural network signal processing which have been used for many years for 
other applications may also provide candidates for the analysis of electrochemical 
datasets [84, 85]. 

2.7 Conclusions 

As discussed in Chapter 1, the aging population in the developed world presents 
major challenges to healthcare. Even if it were desirable, it will soon no longer be 
possible to manage the chronic healthcare needs of an aging population in a hospital 
setting because there will simply not be sufficient nurses and physicians below the 
age of retirement. It is vital that we develop sophisticated tools and information 
management to permit monitoring of patients’ vital signs in the home. Aside from 
the demographic imperative, the ability to make measurements more frequently and 
in a setting more representative of a patient’s normal life will provide benefits for 
the patient. For example, in the case of type I diabetes, it is well established that 
better control of blood sugar greatly reduces the risk of long-term cardiovascular 
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complications such as diabetic foot. Chemical sensors and biosensors will have a 
major part to play in this forthcoming revolution in healthcare.  

Electrochemical sensors and biosensors offer unique advantages for biomedical 
applications. Principal among these is the independence of sensitivity on sample 
size making them uniquely suited to local measurements of concentration, diffusiv-
ity and perfusion. Living systems are characterised by partitioning of solutes and 
the maintenance of concentration gradients on the sub-cellular length scale. Any 
analytical technique which cannot resolve to at least the cellular length scale will at 
best be providing data which is merely correlated with known symptoms. New 
therapy will require new physiological insights, not merely cheap surrogates of 
physician’s medical history-taking. The next best technology for providing highly 
spatially resolved clinical information is imaging techniques such as MRI and PET 
scanning. These methods do provide a near simultaneous image of the tissue, but 
are capital intensive, necessarily hospital-based and have spatial resolution at best 
one to two orders of magnitude worse and in any case do not provide detailed or 
specific chemical information. 

Recent progress in autonomous sensors and sensor networks for physical pa-
rameters, notably blood pressure and heart rate, have not been matched by progress 
in biosensor networking. The last two decades have seen enormous advances in 
chemical sensing and biosensor development, most notably a) improved under-
standing of microelectrode and ultramicroelectrode behaviour for micrometre and 
sub micrometre spatial resolution; b) improved numerical modelling tools which 
have increased our fundamental understanding of electrode reaction mechanism and 
kinetics; c) new insights and techniques in protein engineering and molecular biol-
ogy which have enabled the production of new mutant enzymes with improved sta-
bility, higher activity and enabled controlled protein immobilisation; and d) new 
biological sensing elements such as catalytic antibodies and aptamers which repre-
sent a truly new paradigm in biosensor design and have greatly increased the range 
of analytes and offered the possibility of hitherto unprecedented selectivity. 

Novel materials such as the doped diamond films and nanostructured metal 
films discussed above show great promise already as sensor materials. Other excit-
ing technology is Macpherson’s revolutionary use of carbon nanotubes and 
nanoparticles to template metal deposition [88] to produce sensor elements which 
are an order of magnitude smaller than can be achieved by state-of-the-art lithogra-
phy. Sensors using this technology have already found application as chemically 
active tips for atomic force microscopy [89]. Other promising technology that may 
contribute to the production of integrated devices include the use of TFT technol-
ogy in ion sensing [90], much in the same way as silicon-based MOS is used in IS-
FETs and ChemFETs. 

However, there has been a remarkable dearth of commercial successes based on 
biosensor technology, particularly for long-term implantation. Any implanted ob-
ject will cause a foreign body reaction which will lead to deposition of macromole-
cules and possible inflammation. This is not so critical for passive implants and will 
barely affect the measurement of indicators such as blood pressure. In chemical 
sensing, however, key physical events can occur at the sensor surface. There have 
been advances in biocompatible coatings and improved understanding of the factors 
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affecting tissue-implant interactions but there are nonetheless no generic solutions 
and we appear to be a long way from long-term implantable biosensors. What can 
be done, if decades of intensive research has yet to provide an answer? It may well 
be that in critical applications, active sensors coatings such as the NO releasing, ac-
tive heparin coated polymers (to prevent clotting) developed by Meyerhoff [91] will 
be the answer, though new materials and massive redundancy will undoubtedly 
make a major contribution. 

However, recent developments in microfluidics and, more especially in micron-
eedle array technology hold out the possibility of wearable minimally invasive 
sampling of extracellular fluid. Needle sizes are so small that no red cells are sam-
pled greatly reducing device fouling. Sample volumes are very low (typically pico-
litre to nanolitre) but this has little effect on the performance of electrochemical 
biosensors, and other highly sensitive hybrid off-line detector technology such as 
electrochemiluminescence becomes possible. These strategies will fundamentally 
alter the way we view biomeasurement. Diagnostics which currently depend on ve-
nous blood samples cannot often be justified ethically for all but vital monitoring. 
With minimally invasive sampling, applications which would currently be regarded 
as trivial could become real commercial opportunities. 

Acknowledgments 

The authors would like to thank Dr Martin Arundell for the design and fabrication 
of the serotonin sensor and the resulting measurements of vesicular release. They 
would also like to thank Dr Mark Yeoman for additional measurements and helpful 
discussions. They would like to acknowledge Nick Watkins for the photographs 
displayed in this chapter.  

References 

1. Bates RG. Determination of pH: theory and practice, 2nd ed. New York: John 
Wiley and Sons, 1964. 

2. Cater DB, Silver IA. Microelectrodes and electrodes in biology. In: Ives DJG, 
Janz GJ (eds) Reference Electrodes. New York: Academic Press, 1961. 

3. Hinke JAM. Glass microelectrodes for measuring intracellular activities of so-
dium and potassium. Nature 1959; 184:1257-1258.  

4. Ellis D, Thomas RC. Direct measurement of intracellular pH of mammalian 
cardiac muscle.  Journal of Physiology (London) 1976; 262(3):755-771. 

5. Bakker E., Pretsch E. Potentiometric Sensors for Trace-Level Analysis Trends 
in Analytical Chemistry 2005; 24(3): 199-207. 

6. Cobbe SM, Poole-Wilson PA. Catheter pH electrodes for continuous intravas-
cular recording. Journal of Medical Engineering and Technology 1980; 
4(3):122-124. 

7. Ammann D, Lanter F. Steiner RA, Schulthess P and Simon, W. Neutral carrier 
based hydrogen ion selective microelectrode for extracellular and intracellular 
studies. Analytical Chemistry 1981; 53:2267-2269.  



2. Biosensor Design and Interfacing  83

8. Ives DJG. Oxide, oxygen and sulfide electrodes. In: Ives DJG, Janz GJ (eds) 
Reference electrodes. New York: Academic Press, 1961. 

9. Glab S, Hulanicki A, Edwall G, Ingman F. Metal-metal oxide and metal-oxide 
electrodes as pH sensors. Critical Reviews in Analytical Chemistry 1989; 
21(1):29-47. 

10. Haggard HW, Greenberg LA. An antimony electrode for the continuous re-
cording of the acidity of human gastric contents. Science 1941; 93:479-480. 

11. Horrocks BR, Mirkin MV, Pierce DT, Bard AJ, Nagy G, Toth K. Scanning 
electrochemical microscopy: ion selective potentiometric microscopy. Analyti-
cal 1993; 65(9):1213-1224. 

12. Katsube T, Lauks I, Zemel JN. pH-sensitive sputtered iridium oxide-films. 
Sensors and Actuators 1982; 2(4):399-410. 

13. Perley GA, Godshalk JB. Cell for pH measurements. U.S. Patent no. 
2,416,949, 1947. 

14. Burke LD, Mulcahy JK, Whelan DP. Preparation of an oxidized iridium elec-
trode and the variation of its potential with pH. Journal of Electroanalytical 
Chemistry 1984; 163(1-2):117-128. 

15. Hitchman ML, Ramanathan S. Evaluation of iridium oxide electrodes formed 
by potential cycling as pH probes. Analyst 1988; 113(1):35-39. 

16. Horrocks BR, Mirkin MV, Pierce DT, Bard AJ, Nagy G, Toth K. Scanning 
electrochemical microscopy: ion selective potentiometric microscopy. Analyti-
cal Chemistry 1993; 65(9):1213-1224. 

17. Beyenal H, Davis CC, Lewandowski Z. An improved severinghaus-type car-
bon dioxide microelectrode for use in biofilms. Sensors and Actuators 2004; 
B97(2-3):202-210. 

18. Suzuki H, Arakawa H, Sasaki S, Karube I. Micromachined severinghaus-type 
carbon dioxide electrode. Analytical Chemistry 1999; 71(9):1737-1743. 

19. Hitchman ML, Ramanthan S. Considerations of the pH-dependance of hydrous 
oxide-film formed on iridium by voltammetric cycling. Electroanalysis 1992; 
4(3):291-297. 

20. Marzouk SAM, Ufer S, Buck RP, Johnson TA, Dunlap LA, Cascio WE. Elec-
trodeposited iridium oxide pH electrode for measurement of extracellular myo-
cardial acidosis during acute ischemia. Analytical Chemistry 1998 
70(23):5054-5061. 

21. VanHoudt P, Lewandowski Z, Little B. Iridium oxide pH microelectrode. Bio-
technology and Bioengineering 1992; 40(5):601-608. 

22. Moussy F, Harrison DJ. Prevention of the rapid degradation of subcutaneously 
implanted Ag|AgCl reference electrodes using polymer-coatings. Analytical 
Chemistry 1994; 66(5):674-679. 

23. Kuan SS, Guilbault GG. Ion-selective electrodes and biosensors based on ISEs. 
In: Turner APF et al (eds) Biosensors: Fundamentals and Applications. Oxford 
University Press 1987. 

24. Wightman RM, Wipf DO. Voltammetry at ultramicroelectrodes. Electroana-
lytical Chemistry 1989; 15:267-353 



84    Body Sensor Networks 

25. Phillips CG, Jansons KM. The short-time transient of diffusion outside a con-
ducting body. In: Proceedings of the Royal Society of London A: Mathematical 
and Physical Sciences 1990; 428(1875):431-449. 

26. O’Hare D, Parker KP, Winlove CP. Electrochemical method for direct meas-
urement of oxygen concentration and diffusivity in the intervertebral-disk – 
Electrochemcial characterization and tissue sensor interactions. Journal of 
Biomedical Engineering 1991; 13(4):304-312 

27. Justice JB Jr. (eds) Voltammetry in the neurosciences. Humana Press, 1987. 
28. Cahill, PS, Walker QD, Finnegan JM, Mickelson GE, Travis ER, Wightman 

RM. Microelectrodes for the measurement of catecholamines in biological sys-
tems. Analytical Chemistry 1996; 68(18):3180-3186.  

29. Wightman RM, Brown DS, Kuhr WG, Wilson RL. Molecular specificity of in 
vivo electrochemical measurements. In: Justice JB Jr. (eds) Voltammetry in the 
Neurosciences: Principles, Methods and Application. Humana Press, 1987. 

30. Michael D, Travis E, Wightman RM. Colour images for fast-scan CV meas-
urements in biological systems. Analytical Chemistry 1998; 70:568A–592A. 

31. Heien MLAV, Johnson MA, Wightman RM. Resolving neurotransmitters de-
tected by fast-scan cyclic voltammetry. Analytical Chemistry 2004; 
76(19):5697-5704. 

32. Malinski T, Taha Z. Nitric-oxide release from a single cell measured insitu by a 
porphrinic-based microsensor. Nature 1992; 358(6388):676-678. 

33. Updike JW, Hicks GP.  The enzyme electrode. Nature 1967; 214:986-988. 
34. Bartlett PN, Caruana DJ. Electrochemical immobilization of enzymes V: Mi-

croelectrodes for the detection of glucose based on glucose-oxide immobilized 
in a poly(phenol) film. Analyst 1992; 117(8):1287-1292. 

35. Khurana MK, Winlove CP, O’Hare D. Detection mechanism of metallised car-
bon epoxy oxidase enzyme based sensors. Electroanalysis 2003; 15:1023-1030. 

36. Barker S. Immobilization of biological components of biosensors. In: Turner 
APF, Karube I, Wilson G (eds) Biosensors: Fundamentals and Applications, 
Oxford University Press, 1987.  

37. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. “Plugging into enzymes”: 
Nanowiring of redox enzymes by a gold nanoparticle. Science 2003; 
299(5614):1877-1881. 

38. Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, et al.
Ferrocene-mediated enzyme electrode for amperometric determination of glu-
cose. Analytical Chemistry 1984; 56(4):667-671. 

39. Bartlett PN, Bradford VQ. Modification of glucose-oxidase by tetrathiafulva-
lene, JCS Chemical Communications 1990; 16:1135-1136.  

40. Zhao S, Korell U, Cuccia L, Lennox RB. Electrochemistry of organic conduct-
ing salt electrodes – A unified mechanistic description. Journal of Physical 
Chemistry 1992; 96(13):5641-5652. 

41. Boutelle MG, Stanford C, Fillenz M, Albery WJ, Bartlett PN. An amperomet-
ric enzyme electrode for monitoring brain glucose in the freely moving rat. 
Neuroscience Letters 1986; 72(3):283-288. 



2. Biosensor Design and Interfacing  85

42. Ye L, Hammerle M, Olstehoorn AJJ, Schumann W, Schmidt HL, Duine JA, et 
al. High current density “wired” quinoprotein glucose dehydrogenase elec-
trode. Analytical Chemistry 1993; 65(3):238-241. 

43. Heller A. Electrical wiring of redox enzymes. Accounts of Chemical Research 
1990; 23(5):128-134. 

44. Hochstetler SE, Puopolo M, Gustincich S, Raviola E, Wightman RM. Real 
time amperometric measurements of zeptomole quantities of dopamine re-
leased from neurons. Analytical Chemistry 2000; 72:489-496.  

45. Cass AEG (eds) Biosensors: a practical approach, 2nd ed. Oxford University 
Press, 2004. 

46. Pennarun GI, Boxall C, O’Hare D. The micro-optical ring electrode: develop-
ment of a novel electrode for photoelectrochemistry. Analyst 1996; 121:1779-
1788. 

47. Lindsay A. Development of a photoelectrochemical sensor for the determina-
tion of cyanide in the blood of burns victims. PhD Thesis, University of Lon-
don 2005. 

48. Ross SE, Shi YE, Seliskar CJ and Heineman WJ. Spectroelectrochemical 
sensing:planar waveguides. Electrochimica Acta 2003; 48(20-22):3313-3323. 

49. Wisniewski N, Reichert M. Methods for reducing biosensor membrane biofoul-
ing. Colloids and Surfaces B: Biointerfaces 2000; 18(3-4):197-219.  

50. Albery WJ, Galley PT, Murphy LJ. A dialysis electrode for glycerol, Journal of 
Electroanalytical Chemistry 1993; 334(1-2):161-166. 

51. Compton RG, Foord JS, Marken F. Electroanalysis at diamond-like and doped 
diamond electrodes. Electroanalysis 2003; 15:1349-1363. 

52. Park J, Show Y, Quaiserova V, Galligan JJ, Fink GD and Swain GM. Diamond 
microelectrodes for use in biological environments. Journal of Electroanalytical 
Chemistry 2005; 583:56-68. 

53. Attard GS, Bartlett PN, Coleman RBN, Elliott JM, Owen JR, Wang JH. 
Mesoporous platinum films from lyotropic liquid crystalline phases Science 
1997; 278:838-840. 

54. Silver IA. Problems in investigation of tissue oxygen microenvironment. Ad-
vances in Chemistry 1973; 118:343-351. 

55. Albanese RA. Use of membrane-covered oxygen cathodes in tissue. Journal of 
Theoretical 1971; 33(1):91-103. 

56. Greenbaum AR, Jarvis JC, O'Hare D, Manek S, Green CJ, Pepper JR, et al.
Oxygenation and perfusion of rabbit tibialis anterior muscle subjected to dif-
ferent patterns of electrical stimulation. The Journal of Muscle Research and 
Cell Motility 2000; 21(3):285-291. 

57. Bard AJ,  Faulkner LR. Electrochemical Methods. Wiley and Sons, 1980. 
58. Anastassiou CA, Parker KH, O’Hare D. Determination of Kinetic and Thermo-

dynamic parameters of surface confined species through AC voltammetry and 
a nonstationary signal processing technique: the Hilbert transform. Analytical 
Chemistry 2005; 77:3357-3364. 

59. Bockris JO’M, Khan SUM. Surface Electrochemistry. New York: Plenum 
Press 1993. 



86    Body Sensor Networks 

60. Laviron E. General expression of the linear potential sweep in the case of dif-
fusionless electrochemical systems. Journal of Electroanalytical Chemistry 
1979; 101:19-28. 

61. Newman JS. Electrochemical Systems. New Jersey: Prentice Hall 1991. 
62. Chen K, Hirst J, Camba R, Bonagura CA, Stout CD, Burgess BK, et al. Atomi-

cally defined mechanism for proton transfer to a buried redox centre in a pro-
tein. Nature 2000; 405:814-817. 

63. Watkins JJ, Chen J, White HS, Maisonhaute E, Amatore C. Zeptomole volt-
ammetric detection and electron-transfer rate measurements using platinum 
electrodes of nanometer dimensions. Analytical Chemistry 2003; 75:3962-
3917.  

64. Wightman RM. Microvoltammetric electrodes, Analytical Chemistry 1981; 
53(9):1125A-1134A. 

65. Heien MLAV, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Wassum KM, 
Wightman RM. Real-time measurement of dopamine fluctuations after cocaine 
in the brain of behaving rats. In: Proceedings of the National Academy of Sci-
ences 2005; 102(29):10023-10028. 

66. Armstrong FA, Heering HA, Hirst J. Reactions of complex metalloproteins 
studied by protein-film voltammetry, Chemical Society Reviews 1997; 26:169-
179. 

67. Guo SX, Zhang J, Elton DM, Bond AM. Fourier transform large-amplitude al-
ternating current cyclic voltammetry of surface-bound azurin. Analytical 
Chemistry 2004; 76:166-177. 

68. McNulty DA, MacFie HJH. The effect of different baseline estimators on the 
limit of quantification in chromatography. Journal of Chemometrics. 1997; 
11:1-11. 

69. Brazill SA, Bender SE, Hebert NE, Cullison JK, Kristensen EW, Kuhr WG. 
Sinusoidal voltammetry: a frequency based electrochemical detection tech-
nique. Journal of Electroanalytical Chemistry 2002; 531:119-132. 

70. Bond AM, Duffy NW, Guo SX, Zhang J, Elton D. Changing the look of volt-
ammetry, Analytical Chemistry 2005; 77(9): 214A-220A. 

71. Director SW, Rohrer RA. Introduction to System Theory. McGraw-Hill, 1972. 
72. Bendat JS, Piersol AG. Random Data. New York: Wiley and Sons, 2000. 
73. Gabor D. Theory of communication. In: Proceedings of IEE 1946; 93:429-457. 
74. Kiss IZ, Zhai YM, Hudson JL. Emerging coherence in a population of chemi-

cal oscillators. Science 2002; 296:1676-1678. 
75. Engblom SO, Myland JC, Oldham KB. Must AC voltammetry employ small 

signals? Journal of Electroanalytical Chemistry 2000; 480:120-132. 
76. Gavaghan DJ, Bond AM. A complete numerical simulation of the techniques 

of alternating current linear sweep and cyclic voltammetry: analysis of a re-
versible process by conventional and fast Fourier transform methods. Journal 
of Electroanalytical Chemistry 2000; 480:133-149. 

77. Sher AA, Bond AM, Gavaghan DJ, Harriman K, Feldberg SW, Duffy NW, et
al. Resistance, capacitance, and electrode kinetic effects in Fourier-transformed 
large-amplitude sinusoidal voltammetry: emergence of powerful and intuitively 



2. Biosensor Design and Interfacing  87

obvious tools for recognition of patterns of behaviour. Analytical Chemistry
2004; 76:6214-6228. 

78. Bertram M, Beta C, Pollmann M, Mikhailov AS, Rotermund HH, Ertl G. Pat-
tern formation on the edge of chaos: experiments with CO oxidation on a 
Pt(110) surface under global delayed feedback. Physical Review E 2003; 
67(3):art. no. 036208 part 2. 

79. Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biol-
ogy, chemistry and engineering. Massachusetts: Perseus Books Publishing, 
2000. 

80. Anastassiou CA, Ducros N, Parker KH, O’Hare D. Characterisation of AC 
voltammetric reaction diffusion dynamics: from patterns to physical 
parameters,  Analytical Chemistry, in press. 

81. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical 
mode decomposition and the Hilbert spectrum for nonlinear and non-stationary 
time series analysis. In: Proceedings of the Royal Society London 1998; 
454:903-995. 

82. Huang W, Shen Z, Huang NE, Fung YC. Use of intrinsic modes in biology: 
examples of indicial response of pulmonary blood pressure to +/- step hypoxia. 
In: Proceedings of National Academy of Sciences 1998; 95:12766-12771. 

83. Huang W, Shen Z, Huang NE, Fung YC. Nonlinear indicial response of com-
plex nonstationary oscillations as pulmonary hypertension responding to step 
hypoxia. In: Proceedings of National Academy of Sciences 1999; 96:1834-
1839. 

84. Fu CY, Petrich LI, Daley PF, Burnham AK. Intelligent signal processing for 
detection system optimization. Analytical Chemistry 2005; 77(13):4051-4057. 

85. Zhang XQ, Jin JY. Wavelet derivative: application in multicomponent analysis 
of electrochemical signals. Electroanalysis 2004; 16(18):1514-1520. 

86. Day TM, Unwin PR, Wilson NR, Macpherson JV. Electrochemical templating 
of metal nanoparticles and nanowires on single-walled carbon nanotube net-
works. Journal of the American Chemical Society 2005; 127:10639-10647. 

87. Burt DP, Wilson NR, Weaver JMR, Dobson PS, Macpherson JV. Nanowire 
probes for high resolution combined scanning electrochemical microscopy-
atomic force microscopy. Nano Letters 2005; 5:639-643. 

88. Torsi L, Dodabalapur A. Organic thin-film transistors as plastic analytical sen-
sors. Analytical Chemistry 2005; 380A-387A. 

89. Zhou ZR, Meyerhoff ME. Preparation and characterisation of polymeric coat-
ings with combined nitric oxide release and immobilized active heparin. Bio-
materials 2005; 26:6506-6517. 



3
Protein Engineering

for Biosensors 

Anna Radomska, Suket Singhal, and Tony Cass 

3.1 Introduction 

In Chapter 2, we introduced the basic concept of electrochemical sensors and bio-
sensors. In this chapter, we will focus on the biological aspects of biosensors in two 
important regards; the first being the biological molecules involved in the molecular 
recognition process that gives the biosensors their specificity and sensitivity as il-
lustrated in Figure 3.1 [1]. We will discuss how these proteins can be engineered to 
improve sensor performance.  

The second aspect is concerned with biocompatibility, which is the mutual in-
teraction between the sensor and the tissue within which it is located. Although 
progress has been made in making implantable biosensors reliable and robust over a 
period of days, there are still significant technical issues associated with long-term 
(weeks to months) implantation. This reflects in part the response of the tissue to 
trauma and in part the inherent robustness of the biological molecules used in the 
sensor. This implies that the solution to long-term implantation will come from a 
combination of factors including minimally invasive implantation, understanding 
and modulating tissue response to implantation, and modifying the properties of the 
biomolecules. 

Molecular recognition occurring at or near the sensor surface can be transduced 
through a variety of different physical sensing modalities and this leads to a sensor 
classification shown below.  

• Electrochemical Sensors 
• Potentiometric 
• Amperometric 
• Conductimetric

• Optical Sensors 
• Optical fibres 
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• Planar Surfaces 
• Surface Plasmon Resonance 
• Holographic Grating Sensors 

• Gravimetric Sensors 
• Quartz Crystal Microbalance 
• Surface Acoustic Wave 

• Thermal Sensors 

Figure 3.1 Molecular recognition lies at the heart of biosensor function. 
(See colour insert.)

3.1.1 Electrochemical Sensors 

Electrochemistry was the earliest and is still the most widely employed transduction 
method for use in biosensors and is discussed in more detail in Chapter 2. Its major 
application has been primarily in monitoring blood glucose levels [2]. Potentiomet-
ric sensors are based on the fact that many biochemical reactions, especially those 
involving hydrolysis, result in the formation of ionically charged products and if the 
reaction layer where these are generated is separated from a reference solution by a 
membrane then this change in concentration generates a potential difference. This 
potential difference is measured against a reference electrode and the change in 
concentration determined from the Nernst equation: 
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Traditionally, potentiometric sensors have been based on a liquid junction but 
more recently solid-state devices using Ion-Selective Field Effect Transistors (IS-
FETs) have also been used. Most work on ISFETs has operated in strong inversion 
[3] but there are advantages in operating in the unconventional ‘weak inversion’ re-
gion [4] (see Chapter 7). 

Amperometric sensors are based on the observation that the application of a po-
tential difference between a pair of electrodes can result in redox reactions at the 
surface of the electrodes. The resulting current is used to determine the concentra-
tion of the redox active species. Originally amperometric sensors used the natural 
substrates/products (e.g. oxygen/hydrogen peroxide) as the detectable species (‘first 
generation sensors’). Subsequent developments have used synthetic electron trans-
fer mediators in ever closer integration with the electrode [5] and with direct elec-
tron transfer between protein and electrode [6]. 

As with potentiometric sensors, conductimetric sensors depend on the change in 
concentration of charged species. However the measurement is based upon changes 
in conductivity rather than potential, so the signal is linearly (rather than logarith-
mically) related to concentration.  

3.1.2 Optical Sensors 

Optical sensing techniques are broadly divided into either spectroscopic sensors 
whereby the molecular recognition reaction results in a change in the adsorption or 
emission of photons at particular wavelengths [7] or integrated optical sensors 
where the molecular recognition brings about a change in the inherent optical prop-
erties of the sensor surface [8]. 

Optical fibre sensors have been extensively developed as solid phases for fluo-
rescence sensing particularly using antibody-based recognition. Two of the com-
monest formats are distal tip sensing and evanescent wave sensing. Distal tip sen-
sors immobilise the reagent at the end of the fibre, which is used to transmit both 
excitation and emission wavelengths. This format lends itself particularly well to 
multiplexing where a bundle of distal tip sensors can be used to measure many dif-
ferent target analytes [9]. Evanescent wave optical sensors exploit the observation 
that when light is transmitted through an optical wave guide by total internal reflec-
tion it penetrates a short distance (a few hundred nanometres) beyond the surface of 
the fibre. This means that the light only interacts with molecules within the evanes-
cent field and not with the bulk solution, leading to separation free sandwich or dis-
placement immunoassays [10]. A rather different approach described recently 
makes use of leaky waveguides to increase the depth penetration of the evanescent 
field [11]. 

The scattering or absorption of light by semiconducting, fluorescent or metallic 
nanoparticles is very sensitive to the size of the particle and this has led to a variety 
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of sensing formats based either on the detection of individual particles or the clus-
tering of particles mediated by molecular interactions [12-15]. In some cases, the 
measurements are made in solution but solid supports also provide a matrix for such 
reactions. 

Integrated optical sensors detect changes on the optical thickness (refractive in-
dex) and the commonest format is Surface Plasmon Resonance (SPR). At the inter-
face of two media with different refractive indices, total internal reflection occurs. 
When the interface is made of a dielectric and a metal, i.e., they have dielectric con-
stants of the opposite sign, then at a certain angle of incidence (known as the reso-
nance angle) the momentum of the photons is transferred to collective motions of 
electrons in the metal called surface plasmons. The resonance angle depends on the 
refractive index of the layer covering the metal and hence is sensitive to changes in 
this, as a consequence of binding reactions [16].  

3.1.3 Gravimetric Sensors 

Gravimetric Sensors are similar to SPR in that they measure changes in mass load-
ing on the sensor surface through changes in the mechanical properties. The earliest 
such device to implement this was the Quartz Crystal Microbalance (QCM) whose 
efficacy is based on small shifts in the resonant frequency of a piezoresistive crystal 
surface [17]. Calibration of the QCM in complex backgrounds can be problematic 
as the relationship between mass loading and frequency shift depends upon a vari-
ety of factors including viscoeleastic coupling to the solution phase. The method 
has recently found application in the specific detection of microorganisms using an-
tibody-coated crystals [18]. Other gravimetric sensors include Surface Acoustic 
Wave (SAW) [19] and Love Wave [20] and resonant acoustic profiling [21] de-
vices.

Calorimetric Sensors should be in many ways the most generic as the uptake or 
release of heat is almost the commonest physicochemical change. Advances in mi-
crofluidics and MEMS technology has allowed scaling of calorimetric devices to 
the point where they can take measurements from both small numbers of cells and 
enzyme reactions [22, 23].  

3.1.4 Consuming and Non-Consuming Biosensors 

The actual (bio)molecular recognition process is determined by the nature of the 
biological material and there are a plethora of different combinations of sensors and 
biological materials. However, virtually all biosensors in the end can be considered 
to comprise of either a consuming or non-consuming transducer coupled with either 
a catalytic or affinity reaction in the biomaterial. A common example of a consum-
ing transducer is an amperometric electrode where the oxidation or reduction of a 
redox active molecule results in a current flowing between the electrode and mole-
cules at its surface. In contrast, a non-consuming transducer is a surface plasmon 
resonance device where changes in the surface mass are detected. Similarly an ex-
ample of a catalytic biomaterial is an enzyme whereby the analyte is converted to a 
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more easily detected product whilst an affinity biomaterial simply binds the analyte 
without a subsequent chemical transformation occurring, as in the case of a DNA 
strand hybridising with its complement. 

This distinction between those biosensors that consume the analyte (either 
through the biological material or the transducer) and those that do not leads to a 
further important distinction; non-consuming devices will ultimately reach equilib-
rium where the signal generated is proportional to the concentration (strictly activ-
ity) of the analyte. Where the capacity of the binding agent is much smaller than the 
amount of analyte present in the sample then the latter is not significantly depleted 
and the device senses without perturbing the analyte concentration. This is akin to 
measuring light intensity with a photosensor; photons are adsorbed but there is no 
appreciable change in the ambient light. In contrast, consuming biosensors act as 
kinetic devices and the signal is proportional to the rate of the reaction that controls 
the consumption of analyte. 

In both catalytic and affinity based biosensors the first step in the molecular rec-
ognition process is the formation of a non-covalent complex between reagent (R)
and analyte (A):

.KR A R A+ (3.2)

In catalytic biosensors the second step is the conversion of this complex to a 
product (P) with regeneration of the reagent: 

. kR A R P⎯⎯→ + (3.3)

In either case, the formation of the complex shown in (3.2) results in a hyper-
bolic relationship between the signal and the analyte concentration. 

Another theme of this chapter will be the use of optical methods for sensing; al-
though less well developed for implantation they offer a number of potential advan-
tages in terms of sensing formats, fabrication methods and breadth of analytes that 
can be sensed. Molecular sensing using fluorescent dyes has long been established 
for simple analytes such as pH, calcium and oxygen and recent advances have ex-
tended the range of molecules that can be sensed in this fashion [24]. Given the 
tremendous diversity of protein scaffolds in ligand binding, the combination of the 
specificity and affinity of proteins combined with the versatility of fluorescent dyes 
offers a great many sensing combinations [25].  

3.2 Protein Engineering 

Proteins have often been referred to as ‘molecular machines’ [26] and whilst they 
have many remarkable properties, unlike manmade machines, they have acquired 
these properties through the process of evolution. This means their ‘fitness for pur-
pose’ is defined by their physiological function and this does not exactly match the 
requirements for their use as analytical reagents. Whilst a chemical sensing ap-
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proach attempts to address these limitations through the use of entirely synthetic re-
ceptors, many researchers have chosen to approach the challenge of creating im-
proved reagents through protein engineering [25, 27]. 

Engineering proteins for defined endpoints usually starts with the DNA contain-
ing the gene that codes for the relevant protein. Changes in the nucleotide sequence 
of the DNA can be made using synthetic DNA fragments containing an altered se-
quence (mutagenic sequences). Once the DNA sequence of the gene has been 
changed the altered protein is then expressed in a host organism, most typically the 
bacterium E.coli, and subsequently purified (Figure 3.2). Detailed protocols and ex-
amples can be found in the chapter by Gilardi [27]. 

DNA ProteinDNA Protein

        
Figure 3.2 Protein engineering changes in the sequence of the DNA results in 
changes in protein sequence and hence protein properties. (See colour insert.)

A protein engineering approach to improving the molecular components of bio-
sensors conveniently treats the protein as a collection of modules: 

• A signal transduction module that converts the molecular recog-
nition reaction into a physicochemical change that can be con-
verted to an electrical signal. 

• A recognition module that determines the specificity and affinity 
of the interaction between the protein and the analyte. 

• An immobilisation module that mediates the interaction between 
and the attachment to the surface. 

There are two broadly complementary approaches to protein engineering, often 
referred to as “rational” and “evolutionary” design [25, 28, 29]. Rational design is 
based on classical structure-function relationships and starts with a knowledge of 
the 3D structure of the protein and an understanding of the relationship between 
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amino acid residues and protein function. This approach uses a combination of in-
spection of the structure and molecular modelling to identify target residues for al-
teration.  

Evolutionary design starts with the natural protein and then generates a series of 
random mutations throughout the molecule. This library of variants will be com-
prised of primarily less or non-functional variants, however there will be a very 
small proportion of slightly improved variants and if these can be enriched through 
screening or selection, then over successive ‘generations’ a significantly improved 
variant will emerge. Both approaches have strengths and limitations; with rational 
design there is a straightforward relationship between the desired change in proper-
ties and the mutations that need to be made. On the other hand, our understanding 
of structure function relationships may not be detailed enough to design the most 
adventitious changes and unexpected consequences may arise from changes in pro-
tein sequence. Evolutionary designs can find mutations distant from the site of ac-
tion that would be difficult to predict but require good screening methods and the 
‘space’ being screened may not be large enough to encompass all the desired mu-
tants. 

3.2.1 The Signal Transduction Module 

Biosensors are built on the premise that the biomolecular recognition reaction can 
be transduced into an electrical signal as shown schematically in Figure 3.1. Whilst 
this has clearly been the case with the ‘wild type’ of protein, in many instances, 
there are several ways in which protein engineering can be used to enhance this 
transduction. In the case of affinity sensors the engineering in of a fluorescent re-
porter group to signal analyte binding has been a particularly active area of research 
since the initial descriptions of this approach in 1994 by Gilardi et al [30] and 
Brune et al [31]. Both groups used proteins that are members of the Periplasmic 
Binding Protein (PBP) superfamily targeting maltose and phosphate respectively. 
This protein family is particularly suited to sensing applications as it comprises of 
around thirty members, highly homologous in terms of structure, with high stability 
and a common conformational change consequent upon ligand binding. The pro-
teins are bilobal in structure with roughly equally sized N- and C-terminal domains 
linked by a three or four stranded hinge. In the absence of ligand the two lobes form 
an open structure which undergoes a closing and twisting upon analyte binding. In 
this process a number of residues that are solvent exposed in the absence of ligand 
become solvent shielded. The approach taken to transduce this binding reaction into 
an optical signal was to introduce environmentally sensitive fluorescent dyes cova-
lently at a unique site in the protein.  Gilardi et al [30] used a nitrobenzoxadiazole 
derivative, whilst Brune et al [31] used a coumarin. In both cases the dye is 
quenched by water and so shows an increase in fluorescence on ligand binding. 

This environmental sensitivity of fluorescence emission is a consequence of the 
rate of non-radiative decay of the excited state being sensitive to the local environ-
ment. Depending upon the exact nature of the decay mechanism, there may also be 
wavelength shifts as well as intensity changes (Figure 3.3). 
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Both groups took advantage of the fact that neither the maltose binding protein 
nor the phosphate binding protein has cysteine residues and so the introduction of 
one provides a unique labelling site for thiol reactive dyes. In subsequent papers 
time-resolved fluorescence spectroscopy and circular dichroism [32] and X-ray 
crystallography [33, 34] shed further light on the mechanism of the fluorescence 
change in response to ligand binding. Further work with many other PBPs have 
shown how generic this approach is [35-40]. 

Whilst the PBPs have probably been the most intensively studied they are not 
the only scaffolds for which such an approach has been shown to work. In addition 
there are antibodies [41], enzymes [42] and lectins [43]. The latter example repre-
sents a different approach to site-specific fluorescence labelling where the ligand it-
self is used to effect the modification. 
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Figure 3.3 Environmental sensitivity of fluorophores.

Periplasmic binding proteins and other proteins have also been labelled site spe-
cific with redox active groups [44] however the effect of analyte binding tends to be 
much smaller than is observed for fluorescence.  

Given the widespread use of electrochemical biosensors, the engineering of re-
dox enzymes to improve electrochemical coupling has been pursued on a number of 
fronts. In most redox enzymes the electron transfer to and from substrates occurs 
deep within the protein matrix as this then avoids redox reactions with other cellular 
components and biochemical ‘short circuits’. Unfortunately such protection also 
makes heterogeneous electron transfer slow and therefore artificial electron transfer 
‘mediators’ are used to shuttle electrons between the active site and the electrode. 
Mediators may be either soluble [5], polymeric [45] or protein bound [46] and there 
have been several reports of engineering redox proteins to improve their electrical 
communication with mediators or electrodes. The reaction of mediators with redox 
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enzymes appears to proceed through a typical Michaelis (enzyme/substrate) com-
plex consistent with a specific interaction between the two. Sadeghi et al [47] 
showed that in the case of Cytochrome C Peroxidase (CCP), mutations that 
changed surface residues affected the rate of reaction with ferrocenes differentially, 
depending on both the ferrocene and the mutation. Some combinations showed 
overall rates of electron transfer greater than that of wild type CCP with its natural 
substrate.

Site directed covalent attachment of a mediator can be achieved using the same 
cysteine mutagenesis and chemical modification approach as described above for 
fluorescent dyes, and enzymes so modified include cytochrome P450cam and 
trimethylamine dehydrogenase [48]. A rather different approach was adopted by 
Chen et al [49] who added an oligo(lysine) sequence to the end of glucose oxidase 
and then modified this with ferrocene mediators. Although glucose oxidase has na-
tive lysine residues they are unreactive in the folded form of the enzyme [50] and 
this engineered form shows an extended linear range and better stability than the 
wild type with soluble mediators. 

Where two (or more) enzymes act sequentially to generate a signal the opti-
mised design of biosensors can be problematic, especially with regard to controlling 
the loading of the enzymes on the surface. Moreover we know from nature that 
such sequential reactions often involve close physical association of the enzymes (a 
process known as substrate channelling) [51]. In designing a biosensor for maltose 
determination based on the sequential reactions of glucoamylase and glucose oxi-
dase, Zhou et al genetically fused the two enzymes together with a resulting im-
provement in performance [52]. 

3.2.2 The Recognition Site Module 

Altering the analyte recognition site module in proteins effects changes in both 
specificity and affinity. Changes in specificity can be used to extend or alter the 
range of molecules that are sensed. This can be particularly valuable when there is 
no known natural protein that binds to the analyte but an existing scaffold can be 
modified through alteration of key residues involved in analyte recognition. 

Modification of affinity is probably the most straightforward to achieve, particu-
larly where this involves reducing the affinity to sense at higher concentrations. Ex-
amples where single mutations can reduce the affinity in a controlled fashion, i.e.
without loss of specificity, in binding proteins include the maltose binding protein 
where the replacement of tryptophan residues by alanine was known to reduce the 
affinity for maltose [53]. Marvin and Hellinga used this knowledge to tune the dy-
namic range of the fluorescently labelled maltose binding protein [39]. We have 
used a similar approach with the phosphate binding protein making mutations in the 
binding pocket and the hinge region as shown in Figure 3.4 [34].  
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Figure 3.4 Structure of the E.coli phosphate binding protein showing the 
phosphate ligand and the coumarin fluorophore. (See colour insert.)

Our aim was to lower the affinity for phosphate from its native value of 100nM 
to a range more typical of physiological concentrations and as can be seen from 
Figure 3.5 an approximately three orders of magnitude shift in sensing range was 
achieved. (S. Oaew and A.E.G. Cass unpublished data). 

Figure 3.5 Series of phosphate binding curves for different mutants of phos-
phate binding protein.

Fierke and Thompson have engineered carbonic anhydrase to alter its zinc affin-
ity and kinetics as well as introducing a fluorescent reporter group so that it can be 
used in imaging zinc concentrations in vivo [54] whilst a recombinant urease with 
extended dynamic range has been immobilised on the gate of an ISFET for urea 
sensing [55]. We have used evolutionary methods to increase the activity of alka-
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line phosphates starting from a rationally designed mutant and then further evolving 
it by error prone PCR and DNA shuffling [56] 

Changes in specificity can also be engineered either by relatively small changes 
in the amino acid residues that interact with the analyte or through wholesale res-
culpting of the binding site. As an example of the former we have altered the speci-
ficity of the phosphate binding protein to increase its affinity for arsenate as com-
pared to the wild type enzyme (Figure 3.6, Oaew and Cass unpublished data). 

Fierke, Thompson and co-workers have also altered the specificity of carbonic 
anhydrase to favour copper and then used this in a distal tip optical fibre format in 
seawater to detect pM concentrations of copper ions [57]. 

Engineering of enzymes for sensor applications can be targeted at either the 
substrate specificity or the inhibitor specificity. As an example of the former, D-
amino acid oxidase has had its substrate specificity broadened by evolutionary 
methods to encompass acidic amino acids [58]. In two interesting papers the acetyl-
choline esterase of Drosophila melanogaster [59] and Nippostrongylus brasiliensis
[60] were engineered to alter their sensitivity to inhibition by insecticides. By ex-
amining the pattern of inhibition the different insecticides could be distinguished. In 
the case of the N. brasiliensis mutants the enzymes could be incorporated into 
screen-printed electrodes and showed a very long shelf life. 

Figure 3.6 Dose-response curves for a series of mutant phosphate binding 
proteins with arsenate.

More dramatic changes in specificity have been made through introducing new 
binding sites for quite different analytes. Lipocalins are a robust protein superfamily 
whose members bind various hydrophobic ligands with greater or lesser specificity 
[61] and Skerra has engineered these to alter their binding specificity [62] as alter-
natives to antibodies. Examples include engineering the bilin binding protein to 
bind fluorescein [63] or phthalates [64]. The main application area for these anti-
calins has been in drug discovery [62] but they should be well suited to incorporate 
into biosensors as well. 
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An even more dramatic change in specificity has been shown with the PBPs 
where the scaffold is highly versatile [65] and the introduction of metal [38], or-
ganophosphate [36] and explosives binding site has been achieved [66]. 

3.2.3 Immobilisation Module 

Biosensors by their very nature require the biorecognition molecules to be at or near 
the surface and for implantable sensors this immobilisation has to be virtually irre-
versible (i.e. a covalent attachment). Early biosensors typically used rather harsh 
immobilisation chemistries originating from work on enzyme bioreactors. This was 
quite effective where the enzymes had high catalytic activity, were stable and where 
the sensor surface was relatively large. As sensors have become smaller and the 
biological materials less robust then maintenance of activity is a key issue in deter-
mining performance. Indeed work is developing rapidly on nanoscale sensors [12, 
13, 67] and issues of detection limit are coming to be discussed [68]. This turn 
means that greater control over the biomolecule surface interaction is necessary and 
one approach to this is to use protein engineering to introduce surface binding spe-
cific sequences. The related issue of analysing the protein-surface interactions is 
also of importance and has been reviewed recently [69]. 

Control of protein immobilisation is in principle achieved by having comple-
mentary chemistries on the protein and the surface; the former is through fusion 
‘tags’ and the latter via surface modification. Early work used tags already devel-
oped for affinity purification such as the hexa(histidine) sequence that binds to 
metal chelate surfaces [70, 71]. The histidine tag also immobilises proteins on un-
modified gold electrodes [72]. Thiol termination (either N- or C-) has also been 
used to immobilise proteins to gold electrodes and the resulting device shows im-
proved performance [73]. Cysteine and histidine tagged proteins also bind cova-
lently to electrophilic conducting polymers such as poly(aniline) [74]. 

Other engineered tags that have been used for controlled immobilisation include 
the StrepTag (a streptavidin binding sequence) [75]. In the latter case a flexible gly-
cine-serine spacer was used to separate the protein from the tag, minimising steric 
constraints.

Hydrophobic surfaces can be particularly challenging for protein immobilisation 
as they have little functionality and immobilisation by adsorption often results in 
surface induced aggregation [76]. Where such surfaces need to be modified the use 
of the E12 tag has proven valuable [77] and can be combined with engineering the 
protein for both immobilisation and signal transduction [78] as shown in Figure 3.7 
for the glutamine binding protein (QBP). 

In this case also, the inclusion of a flexible linker between the tag and protein 
improved the performance. In addition to a higher protein loading of this hydro-
philic protein on polystyrene, the tag immobilised protein showed essentially no 
loss of binding or signalling activity compared to the untagged protein in solution 
as shown in Figure 3.8. 
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Figure 3.7 Schematic diagram for engineering glutamine binding protein for 
fluorescence signalling and self assembly on hydrophobic surfaces.

Figure 3.8 The effect of the E12 linker on surface loading and activity of 
QBP on hydrophobic surfaces. The left hand panel shows the protein loading 
as assessed from an immunoassay. The engineered protein has about an order 
of magnitude higher loading. The right hand panel shows that only the E12 
immobilised protein is functional as judged from the change in fluorescence.
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3.3 Biocompatibility and Implantation 

Nanomedicine is a large research area for the application of biosensors due to sig-
nificant advances in nanotechnology, miniaturisation and other multiple scientific 
disciplines. The development of nanodevices such as implantable biosensors, which 
enable the continuous monitoring of biological processes in vivo (rapid biochemical 
changes can be missed by discrete measurements) either intravascularly (in the 
blood stream) or transcutaneously (across the skin surface), is one of the main goals 
within this emerging interdisciplinary field. Realtime in vivo measurements are seen 
as a medically desirable diagnostic tool as they are extremely helpful in the reveal-
ing and understanding of complex underlying disease mechanisms, therefore ensur-
ing an improvement in the health-related quality of life [79]. Permanent implants 
are an attractive alternative to conventional screening methods in terms of provid-
ing fast, easy and continuous assessment of various physiological parameters for 
detecting precursors in potentially life threatening events.  

In cardiology, for instance, devices inserted in the body can provide early warn-
ings of heart failure, the signs of which can be detected in slight changes in the mix 
of proteins. Similar applications have been recognised in neurology, where chemi-
cal monitoring of brain metabolism (using for example glucose and lactate biosen-
sors) can help in the detection of ischaemic symptoms and to direct the course of 
therapeutic intervention [2]. Continuous measurements of urea would lead to better 
monitoring of kidney function and disorders associated with it. Determinations of 
creatinine play a crucial role in the detection of renal and muscular dysfunction. 
Monitoring of uric acid, the major product of purine breakdown in humans, offers 
the opportunity to detect disorders associated with altered purine metabolism (gout, 
hyperuricaemia or Lesch-Nyhan syndrome). Elevated levels of uric acid are ob-
served in a wide range of conditions such as leukaemia, pneumonia, kidney injury, 
hypertension and ischaemia, whereas abnormal concentrations of cholesterol are re-
lated to hypertension, hyperthyroidism, anemia, and coronary artery disease.  

DNA biosensors have enormous applications as a diagnostic tool for inherited 
diseases and the rapid detection of pathogenic infections [80]. The other potential 
novel use of sensors, besides in vivo monitoring, is in the actual treatment of vari-
ous diseases. The long-term aim is not only to monitor a wide range of chronic dis-
orders but also to automatically and autonomously treat pharmaceuticals using 
small drug delivery devices that can be implanted into the patient to manage illness. 
In managing patients with diabetes the continuously measured level of glucose can 
control insulin delivery from an inserted reservoir. Implantable glucose biosensors 
have been proposed as key to developing an automatic insulin injection system, that 
is an artificial, pancreatic beta cell to maintain a desirable glucose homeostasis [81].  

The literature is full of papers on biosensors but only a limited number can fulfil 
the criteria of in vivo application. It should be underlined that performance criteria 
for in vivo biosensors are not only dependent on the specific analyte, but also on the 
intended application. The main required property for clinically usable sensors is ac-
curacy. Accuracy implies precision, linearity, sensitivity and specificity with appro-
priate spatial and temporal resolution. It is necessary to achieve an optimum bal-
ance among the parameters of interest for a specific application. It is important to 
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note that the development of in vivo measurement systems is not straightforward. 
There are numerous problems, difficult to overcome, which prevent the widespread 
application of implantable biosensors in clinical practice. These include sterilisa-
tion, calibration, long-term stability and biocompatibility of the sensor [2].  

Sterilisation is a major prerequisite in optimising the in vivo functionality of im-
plantable biosensors for practical clinical use. A useful method of biosensor sterili-
sation should not only provide microbial verification but also guarantee the func-
tional stability of the sensor. Common approaches for sterilisation (sterilisation by: 
UV or gamma irradiation, treatment with antiseptic reagents like alcohol or glu-
taraldehyde, autoclaving or gaseous sterilisation using ethylene oxide) have severe 
limitations due to their influence on enzyme activity. Biosensors cannot survive re-
liable thermal sterilisation owing to the destruction of enzyme activity. Likewise 
gaseous sterilisation using ethylene oxide cannot be recommended due to the toxic-
ity as well as the fate of the adsorption of residues of the active agent. Liquid ster-
ilisation by antiseptics or sterilisation by gamma irradiation is usually employed but 
not always effective as it additionally causes changes of in vitro functionality and 
polymer structure of the biosensor.  

Consequently, methods of antimicrobial treatment have to be specially adapted. 
As an example, one possible approach is the combined treatment with hydrogen 
peroxide solution acting over four days with 7kGy gamma irradiation. Effective 
methods to produce sterile biosensors should be based not only on final product 
treatment but should also ensure the presence of contamination reducing measures 
in every manufacturing step [82, 83].  

It is commonly known that the assessment of sensor performance is critically 
dependent on a reliable calibration procedure. For medical applications the output 
of implanted biosensors has to be related to the actual analyte concentration at the 
implantation site. Calibration of the device should ideally be done once before in-
sertion ensuring excellent calibration stability following implantation. However it is 
often not possible to rely on in vitro calibrations as the basis for in vivo perform-
ance owing to drift in the analytical response of the biosensor and/or changes in 
calibration due to the immunological response of the surrounding tissue [2, 84].  

For this reason, one- or two-point in situ calibration methods have been devel-
oped. In the one-point calibration procedure the output of the implanted device is 
related to the blood analyte level measured by the conventional in vitro test method 
resulting in an in vivo sensitivity coefficient. In the two-point calibration method 
the plasma analyte level and sensor output reach a new plateau following analyte 
infusion. In such a case an in vivo sensitivity coefficient is obtained from sensor 
readings during the two steady states. The calculated in vivo sensitivity coefficient 
is then used to determine an apparent analyte concentration from the sensor output 
and to estimate its variation during changes of blood concentration. However the 
two-point calibration method is time-consuming and requires linear dependence of 
the sensor signal on the analyte concentration as well as the induction of blood ana-
lyte alteration, so its utility for daily clinical practice is questionable. Use of a one-
point calibration technique has been shown to provide more accurate estimates of 
analyte concentration than the two-point calibration technique. Daily in situ one-
point recalibrations are suggested to obtain reliable in vivo results. However if the 
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number of in situ calibrations is excessive there is less value gained from having the 
sensor implanted in the first place. Furthermore since background signals in the ab-
sence of an analyte can change noticeably with time even frequently used one-point 
calibrations will not ensure measurements accuracy. One solution to obtaining 
clinically correct readings is to use a second non-enzyme electrode to determine the 
exact background, but again this method employs two inserted sensors which com-
plicates implant design [84].  

Another crucial point in the development of biosensors for in vivo use is their 
long-term stability. Various factors contribute to the failure of implantable biosen-
sor operation. Breakdown of functionality may basically happen in two ways: com-
ponent-based failures (such as lead detachment or electrical short-circuit) and bio-
compatibility-based failures (biofouling, hermeticity of encapsulation, electrode 
passivation, limited life-time of the immobilised enzymes) [85]. Some research ad-
vocates enzyme deactivation as the main issue. Immobilisation of enzymes in gels, 
on membranes or on inert dispersed carriers (usually carbon materials) can signifi-
cantly increase stability, although the lifetime of the biosensor with immobilised 
enzymes remains limited. A new approach has been reported where it is possible to 
extend biosensor life time by in situ sensor refilling, that is replacing the deacti-
vated immobilised enzyme with an active enzyme while the electrode remains im-
planted. The spent immobilised enzyme can be removed from the sensor and the 
new active enzyme suspension injected via two subcutaneously implanted septa, 
without surgical intervention [86].  

Another major obstacle to the use of implantable biosensors is associated with 
the unavoidable, progressive changes of their function with time caused by the sur-
rounding biological medium. For all in vivo measurements, the inserted device per-
turbs the environment initiating an inflammatory response in the host [85]. Signifi-
cant efforts have been made to develop biosensors for intravascular and 
subcutaneous application. Three different processes can give incorrect analytical re-
sults for sensors implanted within the blood stream. Firstly, adsorption of proteins 
on the surface of the biosensor leads to the adhesion and activation of platelets 
(highly metabolic cells). This event results in an initiation of thrombus on the sur-
face of the implanted device. The presence of adhered platelets on the sensor sur-
face generates a local surface concentration of analyte species, which is different 
from the bulk of the blood. Similar analytical errors can be generated by the so 
called ‘wall effect’ which is caused by placing the implanted device in a region 
where it can end up touching the blood vessel wall. Positioning of the sensor near 
highly metabolically active cells creates localised concentrations of analyte yielding 
an error pattern identical to that observed by the adhesion and activation of plate-
lets. The third process, which can interfere with sensor readings, is a dramatic fall 
in blood flow at the implant site due to vasoconstriction around the catheter [84].  

Since the idea of implantable sensors is to function within the patient without 
additional medical supervision, it is the long-term placement of such devices subcu-
taneously, rather then intravasculary, that represents a more likely approach to 
clinical success. Subcutaneous tissue is regarded as the most appropriate site of im-
plantation because of good accessibility for surgery and relatively simplified sensor 
replacement. Naturally implanting sensors subcutaneously does not eliminate bio-
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logical response issues that can affect analytical performance. Although thrombus 
formation is no longer a problem there are several other difficulties to overcome 
[84].  

Immunological response in the case of subcutaneous implantation consists of 
several phases: acute, chronic and fibrotic encapsulation. During the acute response 
plasma proteins particularly fibrinogen (fouling of the sensor) are firstly adsorbed 
and then phagocytic cells (neutrophils, monocytes, macrophages) surround the sur-
face of the sensor and attempt to destroy it. This results in a higher consumption of 
oxygen and accelerates glucose metabolism (the ‘respiratory burst’) followed by the 
generation of oxygen-derived free radicals such as H2O2, NO, OH·. The subsequent 
phase of acute response is the release of hydrolytic enzymes from lysosomes pre-
sent in phagocytes, which aim to further degrade the sensor. The acute inflamma-
tory response phase lasts from 24 to 48 hours, after which chronic inflammatory re-
sponse begins. This reaction continues for 1-2 weeks ultimately resulting in fibrous 
encapsulation of the implanted material (final stage of wound healing in response to 
implanted, non-degradable foreign material). The extent and progression of the in-
flammatory process is dictated by the nature of the implant, specifically size, shape, 
physical (such as surface structure) and chemical (presence of charge, hydrophobic 
or hydrophilic nature) properties [86].  

The biological reactions described above are tolerable in the case of artificial 
organs, however in the case of implanted biosensors they are undesirable since their 
functional characteristic will be changed in an unexpected manner [2, 83]. The con-
sequence of encapsulation is insufficient vascularisation around the inserted biosen-
sor. Due to the absence of dependable flow of blood delivering sample, the im-
plantable device resides in a relatively stagnant environment, therefore diffusion 
conditions are undefined and the estimation of true analyte level is not possible. 
This critical problem, which seriously limits not only accuracy of determination but 
also sensor lifetime, has been known for many years and leads to the biocompatibil-
ity issue. According to biocompatibility research on materials and sensors, biocom-
patibility does not mean that the sensor is inert but that it causes minimal perturba-
tion of surrounding living tissue and likewise the in vivo environment does not 
adversely and significantly influence sensor performance [2, 85, 87]. 

Partly because of the limitations of biocompatibility (with membrane biofouling 
playing a leading role in sensor instability), biosensors have proved to be inade-
quate for providing reliable data for extended time periods of in vivo application. 
However in the past few years novel solutions have been proposed to improve bio-
compatibility. The following section discusses sensor modifications required to re-
duce protein adsorption and to increase sensor integration with surrounding tissue 
by local drug delivery and control of tissue responses such as, for example, angio-
genesis.  

The need to diagnose and manage the worldwide health problem of diabetes 
mellitus has resulted in the most widely studied and arguably most successful im-
plantable sensors to date being amperometric glucose sensors. Generally speaking 
two main analytical transduction methods have found application in the design of 
implantable chemical sensors: electrochemical and optical techniques, however be-
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cause of their predominance in the literature, amperometric glucose sensors are dis-
cussed most frequently in this section [85].  

The reduction of biofouling has predominantly been accomplished by fabrica-
tion of outer membranes that serve as a biocompatible interface, which protects the 
underlying enzyme and electrode from immune system attack [83]. Designing an 
appropriate biocompatible coating for biosensors is a particularly complicated prob-
lem. The chosen material must retard protein adsorption but simultaneously it must 
be permeable to the analyte and to reaction products. The material must also not 
cause excessive enzyme deactivation, therefore organic solvents, radicals of de-
composing initiators (e.g. acetophenones), heat and UV light should be avoided. In 
addition, the biocompatible material should be free from cytotoxic, irritant, sensitis-
ing and carcinogenic effects. Polyurethane, Nafion, cellulose acetate, hydrogels, 
surfactants, polytetrafluoroethylene, polyvinyl chloride and other chemicals have 
been used with varying degrees of effectiveness [85]. Kerner and co-workers pro-
posed polyurethane as an outer protective membrane for glucose biosensor and 
showed the ability to monitor glucose for up to 7h. Poor results was reported owing 
to loss of sensitivity of the sensor caused by low molecular weight substances from 
the sample diffusing across the polyurethane biocompatible coating [88]. In a simi-
lar study Moussy et al demonstrated a needle-type, electrochemical glucose sensor 
with Nafion as a protective biocompatible coating and found that protein adsorption 
caused loss of sensitivity and histological analysis showed limited tissue encapsula-
tion after 14 days subcutaneous of implantation in dogs [89]. Ammon et al utilised 
a cellulosic material derived from bacterial source and found that the material 
showed low adsorption of bovine serum albumin and low complement activation. 
However the bioprotective layer was secured with on O-ring, a method that cannot 
be used with miniaturised sensors [90]. Rigby et al examined the use of a slow 
moving stream of phosphate-buffered saline solution over the tip of the sensor as 
the biointerface in the subcutaneous tissue of rats and found a significant reduction 
of device fouling by protein adsorption [91]. Kros et al compared various sol-gel 
derived hybrid materials for use as biocompatible coatings (heparin, polyethylene 
glycol, dextran, Nafion, and polystyrene). They discovered that fibroblast cell pro-
liferation was dramatically diminished on sol-gel coatings that contained dextran or 
polystyrene [92].  

Alternatively a great reduction of inflammatory response in vivo is achieved by 
surface modification to form hydrogels using hydrophilic polymers. The antifouling 
character in this case is believed to be due to the ability of these polymers to render 
the surface extremely hydrophilic, so that proteins have difficulty penetrating the 
surface because of a bound layer of water. Schmidtke and Heller used this phe-
nomenon in their study and demonstrated that subcutaneous glucose electrodes ob-
tained by ‘wiring’ glucose oxidase to crosslinked poly(4-vinylpyridine) polymer 
complexed with osmium (II/III)-bis (dipyridine) were less encapsulated [93].  

Instead of non-specific binding reduction, another approach can be used when 
specific functions inducing intended biological responses are introduced. The most 
obvious issues are the suppression of a defence reaction near the inserted device 
and the enhancement of neovascularisation around the biosensor.  
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There are two strategies for providing a better integration of the sensor within 
the tissue [84, 85]. The first is the application of the controlled release of drugs that 
prevent inflammation and inhibit fibrosis in favour of the growth of vascularised 
tissue that would not severely impair delivery of blood analyte to the sensor. The 
local drug release provides benefits by reducing systemic side effects and improv-
ing therapeutic response. There are some potential strategies for delivering low lev-
els of drug around the biosensor. One possible solution is to design the sensor with 
a small reservoir containing, for example, the anti-fouling agent. The other method 
is to incorporate a layer that would slowly degrade and thus deliver the medication.  

There are two keys to the potential success of this approach. Firstly, the pres-
ence of the released immobilised agent within or on the outer layer of the sensor 
should not perturb the analytical response of the device. Secondly, the loading of 
the agent within or on the outer surface of the sensor must be adequate to ensure its 
activity for long-term in vivo application. It is commonly known that nitric oxide is 
a naturally occurring anti-platelet agent, therefore its release chemistry, which mim-
ics a natural physiological process, could provide important conditions for improv-
ing the analytical performance of intravascularly inserted sensors [84, 94]. Schoen-
fish et al demonstrated that the adhesion of proteins is limited when the 
electrochemical oxygen sensor is covered with a polymer that slowly releases 
physiological levels of NO gas [95]. Subsequently the prospect of using NO release 
sol-gel outer coatings for glucose sensors has been reported, with biosensors fabri-
cated in the presence of the NO release chemistry [84].  

The second technique has the same goal of promoting the growth of vascular-
ised tissue, but accomplishes this by modifying the sensor surface. These modifica-
tions can either involve adding certain functional groups to alter the surface chemis-
try, or by controlling the topography surface through processing, in order to favour 
the ingrowth of vascularised tissue. It has been suggested that insufficient vasculari-
sation surrounding the inserted biosensors decreases the appropriate analyte con-
centration at the implant side. However this effect is alleviated after a few days 
when the foreign body capsule has matured enough to provide ingrowth of tissue 
bearing a rich supply of capillaries (angiogenesis process) directly to the surface of 
the biosensor. Improvement of neovascularisation can be achieved be incorporating 
an angiogenesis factor such as a vascular growth factor or adding a specially struc-
tured polytetrafluoroethylene membrane to the sensor surface. The most important 
requirement of this approach is the maintenance of proper analyte transport through 
the multi-layer coatings, therefore any additional membrane applied within the bio-
sensors must be extremely thin or sufficiently porous [85, 96].  

The concept of initiation and modulation of angiogenesis was used by Updike 
et al in their study. They developed an electrochemical glucose sensor consisting of 
angiogenic, bioprotective and enzyme layers. The bioprotective membrane reduces 
the defence mechanism caused by macrophages, whereas the outermost angiogenic 
layer promotes the development of new blood vessels on the sensor surface. It 
should be pointed out that at the same time the additional coatings of the biosensor 
do not affect diffusion of the analyte [97].  

The increasing demand and interest in developing implantable sensors has lead 
to significant progress in the commercial area. Some of the implantable glucose 
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sensors have been successfully tested on animals and have made their way into lim-
ited human testing, therefore commercial availability of these devices seems to be 
moving closer to reality.  

Two different concepts of implantable glucose sensors have been proposed: 
fully implanted and percutaneous (worn through the skin). The fully implanted bio-
sensors are designed for long-term use and need to be inserted by a specialist while 
the percutaneous needle-like devices are fabricated to operate for a few days and 
are replaceable by the patient [87].  

Several companies have been working independently to develop their own per-
cutanous devices. After a long-term research program, MiniMed (Sylmar, CA, 
USA) began human trials of an implantable subcutaneous glucose sensor, which re-
sulted in its launch in 2002. Relatively frequent calibration of the sensor is required 
via periodic in vitro tests, and hence the output of the device is not readable by the 
patient. Access to the obtained information is restricted to the physician [84, 98]. 
Therasense (Alameda CA, USA) also introduced a subcutaneous needle-type sensor 
less than 10% of the length of the MiniMed device. The company developed the 
idea of a ‘wired’ glucose oxidase sensor proposed by Heller and co-workers. The 
prototype is wireless, intended for use with a ‘pager unit’ [84, 98]. A different ap-
proach was adopted by Synthetic Blood International who are working on a fully 
implantable glucose sensor based on materials commonly found in cardiac pace-
makers. The device consists of an encased titanium battery, microprocessor and 
glucose oxidase enzyme system encapsulated in a semipermeable cellophane ace-
tate membrane, which provides continuous, accurate monitoring of blood. Results 
are displayed as a digital readout in a wearable beeper-sized device, which it is 
hoped will have an implant life exceeding one year [87]. Several other implantable 
sensors, from other manufacturers, are in development and are claimed to be close 
to market.  

Finally it should be mentioned that due to the success of intravenous glucose 
sensors MiniMed have developed a prototype artificial ß-cell system. The sensor it-
self can be implanted into the superior vena cava via direct jugular access. An im-
plantable intraperitoneal insulin infusion pump is placed in the abdominal wall, and 
the two are connected by a subcutaneous lead, allowing real-time transmission of 
sensor data to the insulin pump [98].  

In conclusion, biosensors seem to be ideally suited to dealing with the dynamic 
nature of living systems. Significant advances have been made in the design, elec-
tronics, selectivity and sensitivity of biosensors, which enable such devices to per-
form optimally in vivo for extended periods of time; however there are issues that 
still remain unresolved. The lack of reliable analytical performance of the devices 
once implanted has prevented widespread use of biosensors in the clinical area. 
These performance problems appear due to biological response of the host to the 
implant. Only with a better understanding of the processes involved in sensor deac-
tivation would it be possible to develop adequate strategies to achieve accurate ana-
lytical results with inserted biosensors.  

It also seems worthwhile to simultaneously investigate the control of tissue reac-
tion to implanted devices. It is now believed that there are reasonable chances for 
the commercial success of implantable glucose sensors, however there is also great 
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demand for the monitoring of other analytes besides glucose, such as urea, 
creatinine, lactate or glutamate. Perhaps in the near future a typical doctor’s visit 
will not be needed, as an array of biosensors implanted in the body will act as a 
constant on-board doctor, detecting disorders at an early stage and indicating the 
necessary treatment of the disease.  

3.4 Conclusions 

Many of the issues associated with the extension of biosensor technology from in 
vitro to in vivo applications have long been appreciated and solutions to them are 
slowly developing. Whether the vision of a long-term implantable sensor will ever 
be realised will depend on advances across a range of disciplines, many of them are 
discussed in this volume. There is little doubt that a panoply of technologies will 
need to be combined in new and previously unsuspected ways. There is also little 
doubt that the rewards of success, in terms of quality and duration of life in the case 
of many of those suffering from chronic conditions, will be substantial. 
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4
Wireless Communication 

Henry Higgins 

4.1 Introduction 

Increasingly, sophisticated implanted medical devices are integrating wireless 
technology to support an ever-expanding range of therapeutic and diagnostic 
applications. For example, an implanted heart pacemaker or cardiac defibrillator 
enabled with a wireless link allows a physician to monitor more easily a patient’s 
response to therapy and adjust device performance as required. With a network of 
in-body and on-body sensors, muscles can be stimulated to help restore lost limb 
function. Similarly, a radio-controlled valve in the urinary tract that is operated on-
demand by the patient will restore bladder control.  

Drug manufacturers are also interested in patient monitoring during treatment to 
regulate dosages and detect side effects. Introducing a new drug is a costly 
endeavour with considerable risk, as drugs will be pulled from the market if even a 
small number of patients have an adverse reaction. By monitoring the internal 
chemistry, patients susceptible to side effects could be identified earlier in the 
treatment process and alternative therapies could be considered. This would then 
benefit the patient, and reduce the risk of a drug being withdrawn that may yet 
assist others.    

Whether it is a pacemaker communicating patient health and performance data 
to a base station, or a BSN integrating a number of devices, these new applications 
require a reliable, wireless communication link between implanted devices through 
the patient’s skin to a clinician. The wireless link can be used to interrogate the 
implant at either irregular intervals, on a regularly scheduled basis or provide near 
constant communication. A one-way wireless link may be used to obtain patient 
health or device performance data from the implant, while a two-way link allows 
external reprogramming of an implanted device.   

This chapter will discuss two types of communication links: the inductive loop 
and Radio Frequency (RF) communication. Widely in use today, the inductive loop 
is useful for transferring small packets of data without requiring an implanted 
power source (battery). While an RF system does require an implanted battery 
source, it is capable of transferring larger packets of data within a shorter time 
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period and over greater distances. RF-based communication will be the main topic 
of this chapter. 

While wireless communication through air has been extensively documented, 
communication from implanted devices through the human body is a new area of 
study. This chapter will discuss body properties and their effect on radio 
propagation. The human body is an uninviting and often hostile environment for a 
wireless signal. One of the most important considerations for implanted devices is 
physical size, meaning in-body communication system designs are restricted to an 
extremely small antenna that needs to be characterised to enable it to be effectively 
coupled to the transceiver. A significant portion of this chapter is devoted to 
antenna measurement and coupling circuit design, as it is critical to the success of 
an implanted RF system. 

4.2 Inductive Coupling 

Before discussing in-body RF communication, it is important to understand 
inductive coupling. Several applications still use electromagnetic coupling to 
provide a communication link to implanted devices, with an external coil held very 
close to the patient that couples to a coil implanted just below the skin surface. The 
implant is powered by the coupled magnetic field and requires no battery for 
communication. As well as providing power, this alternating field is also be used to 
transfer data into the implant. Data is transferred from the implanted device by 
altering the impedance of the implanted loop that is detected by the external coil 
and electronics. This type of communication is commonly used to identify animals 
that have been injected with an electronic tag.  

Electromagnetic induction is used when continuous, long-term communication 
is required, such as for a cochlear implant used to restore hearing. A cochlear 
implant includes a coil is placed below the skin behind the ear and an external 
energising coil. Using a magnet in one coil and an iron puck in the other, the coils 
are kept in alignment without requiring any external support. Power for the implant 
and encoded sound is transmitted across the small gap. The power source is an 
external battery that can be changed with ease and the implant can remain in place 
for many years. 

Another application using electromagnetic coupling is in the treatment of an 
Abdominal Aortic Aneurysm (AAA). In this situation, a shaped tube is inserted into 
the patient through a “keyhole” in the groin and placing it over the affected area. To 
evaluate the patient’s health, a pressure sensor is included that can be interrogated 
at any time for many years. As a result, major abdominal surgery is replaced with a 
relatively unobtrusive procedure and the patient can be easily monitored. 
Electromagnetic coupling is also used to “fine-tune” pacemakers and measure 
intercranial pressure. 

The base band for electromagnetic communication is typically 13.56MHz or 
28MHz, with other frequencies also available. Its use is subject to regulation for 
maximum Specific Absorption Rate (SAR); two important standards are ANSI 
C95.1 and ICNIRP.  
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Inductive coupling achieves the best power transfer when using large transmit 
and receive coils, meaning it is impractical when space is an issue or devices are to 
be implanted deep within the patient. This technique does not support a very high 
data rate and cannot initiate a communication session from inside of the body [1].   

4.3 RF Communication in Body 

Compared with inductive coupling, RF communication dramatically increases 
bandwidth and enables a two-way data link that allows an implant to initiate a 
communication session. This requires an implanted battery, electronics and suitable 
antenna. While some in-body communication systems initially used the Industrial 
Scientific and Medical (ISM) [2] bands, the Medical Implant Communication 
System (MICS) [3] band of 403MHz to 405MHz is gaining worldwide acceptance. 
This band has a power limit of 25 W in air and is split into 300kHz wide channels. 

The human body is a medium that poses numerous wireless transmission 
challenges. Unlike air, the body is composed of varied components that are not 
predictable and will change as the patient ages, gains or loses weight, or even 
changes posture. More details on the impact of the changing nature of the human 
body on wireless communications are discussed by Johansson [4]. While there are 
simple formulas for designing free-air communications, it is very difficult to 
calculate performance for an in-body communication system, as each individual is 
different. To compound the design challenge, the location of the implanted device is 
also variable. A surgeon fits the implant into the best position to perform its 
primary function, with little consideration for wireless performance. This means an 
implanted RF communication system must operate in a wide variety of 
environments and positions that can change with time.  

The typical dielectric constant ( )rε , conductivity ( )σ  and characteristic 
impedance ( )oZ  properties of muscle and fat are illustrated in Table 4.1. The table 
demonstrates that these two mediums are very different and properties change with 
frequency.  

Table 4.1 Body electrical properties (source: FCC and William Scanlon, Queens 
University Belfast).

Muscle Fat Frequency 
(MHz) 

rε -1(Sm )σ ( )oZ Ω rε -1(Sm )σ ( )oZ Ω

100 66.2 0.73 31.6 12.7 0.07 92.4 
400 58.0 0.82 43.7 11.6 0.08 108 
900 56.0 0.97 48.2 11.3 0.11 111 

The dielectric constant has an effect on the wavelength of a signal. In air the 
wavelength can be found from (4.1) where 1rε = . However in a different medium 
the wavelength is reduced as (4.2). 
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where λ is the wavelength in air in meters and f is frequency in Hz.  

medium
r

λλ
ε

=  (4.2) 

where mediumλ is the wavelength in medium. At 403MHz the wavelength in air is 
744mm, but in muscle with 50rε = the 105mediumλ = mm. This is of considerable 
help in designing implanted antennas where physical size is an important 
consideration. The conductivity of muscle is 0.82Sm-1 – this is more than air, which 
is almost zero. The effect of this is similar to surrounding the implant with seawater 
that will attenuate the signal as it passes through. This results in reduced penetration 
as shown in Table 4.2. 

Table 4.2 Penetration depth of tissue, where penetration depth is where 
field intensity decreases by e-1 (source: William Scanlon, Queens 
University Belfast).

Frequency (MHz) Muscle (mm) Fat (mm) 
100 75.1 339 
400 51.5 229 
900 41.6 163 

The characteristic impedance ( )oZ  is relevant when it changes, such as at the 
fat-muscle boundary. This will cause part of the signal to be reflected by a term 
known as reflection co-coefficient , found from (4.3). 

o r

o r

Z Z
Z Z

−
Γ =

+
(4.3)

where oZ is the impedance of free space (377 ), and rZ is the impedance of 
medium in .

This results in a signal being reflected of magnitude  of incident signal power. 
So for muscle-fat boundary  = 80% of the signal is reflected as shown in Figure 
4.1. If the signal is incident at the Bragg Angle all of the incident signal will be 
reflected. This is shown in Figure 4.1. 

As an implant does not have an earth (ground), the case or other wires will also 
radiate. This means that signals will be radiated from the antenna and other 
structures associated with the implant, as shown in Figure 4.2. 
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Figure 4.1 Signal reflection at muscle – fat – air boundaries. 

Figure 4.2 Radiation from an implant. 

To summarise, a signal travelling through the body will suffer attenuation and 
reflection from various boundary changes. 

4.4 Antenna Design 

Of the many books written on the subject of antennas, almost all of them describe 
operation in air. While some of the principles still hold true for in-body use, as 
described above, the surrounding medium is very different. A good basic reference 
is provided by Kraus [5]. 

A half-wave dipole for 403MHz in air will be 372mm, but in muscle it reduces 
to 52.6mm. A quarter-wave monopole will be reduced from 186mm in air to 
26.3mm in muscle but requires a counterpoise (large conductor at its base, as seen 
Figure 4.3). The dipole or monopole are resonant antennas requiring a medium of 
constant rε . The first problem is that each body will have a different rε  that may 
change as the patient changes weight or the implant moves. This will cause the 
antenna to be non-resonant and operate with reduced effectiveness. As resonant 
antennas are also often too large for in-body use, this design is not practical. 

1mW

Muscle oZ  = 43 Fat oZ = 108 Air oZ  = 377

0.57mW 0.25mW
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Figure 4.3 Monopole antenna with ground plane. 

An in-body antenna needs to tuneable with an intelligent transceiver and 
routine. This will enable the antenna coupling circuit to be optimised and the best 
signal strength obtained. Often the size constraints dictate the choice of a non-
resonant antenna. A non-resonant antenna will have lower gain and therefore be 
less sensitive on receive and radiate less of the power generated by the transmitter. 
This makes design of the antenna coupling circuit even more important. 

Figure 4.4 Helix antenna copper conductor on a ceramic substrate.

Antenna options are also dictated by the location of the implant. For example, a 
urethra valve (artificial bladder sphincter) needs to be replaced without surgery at 
regular intervals. The available diameter is 4mm to 6mm and the length is 
restricted. This rules out a patch antenna, and it would be difficult to keep a 
monopole or dipole in place even if they would fit. The best option is to integrate a 
helical antenna into the shape of the valve implant. The design equations are found 
in a paper by Krall [6] and two lab versions are shown in Figure 4.4. This type of 
antenna may also be of use in an oesophagus probe. The conductor could be printed 
or evaporated on to the surface of the valve.  

A patch antenna can be used when the implant is flat and there is no room to 
deploy a short wire. Patch antennas comprise a flat substrate coated on both sides 
with conductor. The substrate is typically alumina or similar body-compatible 
material (biocompatibility will be discussed later), with platinum or 
platinum/iridium coating both surfaces. The upper surface is the active face and is 
connected to the transceiver and the back face is typically connected to the implant 
0V. The connection to the transceiver needs to pass through the case where the 
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hermetic seal is maintained, requiring a feed-through. The feed-through must have 
no filter capacitors present; these are common on other devices. The connection to 
the top (active) surface can be by a hole through the substrate (Figure 4.5) or by a 
wire connected to the top (Figure 4.6). The back face can be connected to the case 
with conductive epoxy, if it is attached to 0V, or by wire. 

Figure 4.5 Patch with through-hole connection. 

Figure 4.6 Patch with wired top surface connection. 

A patch antenna will be electrically larger than its physical size because it will 
be immersed in a high rε  medium. It can be made to appear even larger electrically 
if the substrate is of higher rε , such as Titania or Zirconia. Further reading on small 
antennas can be found in Fujimori [7] and PCB antennas by Lee and Chen [8]. 
Other antenna reading includes ARRL [9] and Kraus [5]. 

If an antenna can be mounted on a transmission line (coax or twin wire cable) 
then a bow tie design can be considered. The bow tie has a wider operating range 
than a simple linear dipole but is larger. The broadband performance will help when 
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it is in the body medium to reduce the effect of a sharp resonance. A typical bow tie 
is printed or evaporated onto a flexible substrate, as shown in Figure 4.7. 

Figure 4.7 Bow-tie antenna. 

Another type of design to be considered in the Planar Inverted F (PIF) antenna 
commonly used in small mobile phones. A small phone and an implanted device 
share many performance challenges. In this case, the antenna is mounted onto the 
case and encased in a suitable non-conductive material for mechanical stability. 
This type of antenna is small but found to be effective in some applications. 

The off-resonance antennas have low radiation resistance, typically in the order 
of a few Ohms for a patch. Better radiation is achieved with a higher radiation 
resistance that typically require a larger structure. 

A loop antenna is an option where it can be deployed away from the implant 
case or other metal. The loop antenna operates mostly with the magnetic field, 
whereas the dipole, patch, monopole, etc. operate mostly with the electric field. The 
loop antenna delivers comparable performance to that of a dipole, but with a 
considerably smaller size. Also the magnetic permeability of muscle or fat is very 
similar to that of air, unlike the dielectric constant that varies considerably as 
described above. This property enables an antenna to be built and used with much 
less need for retuning. A loop antenna does need to be mounted away from the case 
and on a biocompatible structure. Equations (4.4) and (4.5) relate to small and large 
loops, other equations exist for multi-turn loop designs. 

( )2231200 /radR A λ= (4.4)

for 2 /100A λ≤ , where radR is radiation resistance and A is the loop area and  the 
wavelength in medium. 

( )223270 /radR A λ=  (4.5) 

for 2 /100A λ> .
An important measurement of an antenna performance is the return loss – how 

much of the signal sent to the antenna is reflected back and how much is radiated. 
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An ideal value for  is 0, with 1 representing total reflection. One feature of a small 
antenna is that it may have a good return loss but radiate poorly, meaning radiation 
efficiency must also be measured. 

4.5 Antenna Testing 

Before designing a matching network for the antenna/transceiver interface it is 
necessary to measure the impedance of the antenna within a representative medium. 
Testing an implant antenna in-air has limited use and non-living tissue does not 
have the same properties as the human body, so a body phantom is used. A mixture 
of water, sodium chloride, sugar and Hydroxyl Ethyl Cellulose (HEC) will mimic 
muscle or brain tissue [10] for the frequency range 100MHz to GHz (see Table 4.3 
below). 

Table 4.3 Body tissue recipes. 

Ingredient % By Weight 
100MHz to 1GHz 

% By Weight 
1.5GHz to 2.5GHz 

Water 52.4 45.3 
Sugar 45.0 54.3 

Salt (NaCl) 1.5 0.0 
HEC 1.1 0.4 

4.5.1 Antenna Impedance and Radiation Resistance Measurement 

Knowing the impedance of the antenna is critical for design and operation of the in-
body communication system. The example that follows is for a patch but could be 
adapted for other antenna types. 

Figure 4.8 Network analyser test set-up for impedance real part >10 .
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Radiation resistance can be measured with an antenna immersed in body 
phantom liquid in a Perspex cylinder. This can prove difficult as the liquid may leak 
into the measurement jig and corrupt the results. As an alternative, a patch, for 
example, is mounted on a copper plate and pushed against a bag of the phantom 
(Figure 4.8). If the real part of the impedance is >10  then a network analyser can 
be used, however often the real part is lower, requiring a different method. A way 
of measuring an antenna with low radiation resistance is described in some detail 
[5], as it will often be the case that an implanted antenna will be difficult to measure 
directly on a network analyser.  

4.5.2 Quarter Wave Line Impedance Measurement 

One alternative to using a network analyser directly is to couple a signal into a 
quarter wavelength line (or odd integer multiples of quarter wavelength) and 
measure the signal loss. From this, the change in resonant frequency and the 
Q (quality factor) can be used to determine the patch impedance. 

The resonant line and coupling structure is shown in Figure 4.9. This is a cross-
section through the centre of the assembly showing the internal construction. The 
length of the centre conductor is 0.25 . The impedance is defined by the diameters 
of the centre conductor and the outer tube. 

The feeds comprise RG402, 50Ω, semi-rigid cable terminated with SMA 
connectors and clamped in place. The bottom of the centre bar has a split collett to 
enable the test sample to be attached. The spacers are of PTFE, the rest of the jig is 
copper.  

A reference short circuit plate is also needed to calibrate the line, and this 
consists of a brass block that contacts the centre conductor and makes good contact 
to the bottom plate. 

Figure 4.9 Quarter wavelength 400MHz line. 
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The line is attached to a network analyser, as shown in Figure 4.10, and set to 
measure the S21 (transmitted signal from Port 1 to Port 2). The S21 measurement 
will result in a peak in the transmission at the resonant frequency. Further 
measurements of the peak are used to determine the Q of the antenna. The resonant 
frequency and Q  of the line are measured. Q  is defined as 

3

centre

dB

f
Q

B
= (4.6)

where centref  is centre frequency and 3dBB is 3dB bandwidth. With the line 
impedance, the loss can be derived from 

4
loss

o

R N
Z Q

π= (4.7)

where N is the number of quarter wavelengths, and lossR is the resistance of the line. 
Having found the losses, the reference short is replaced with a test antenna. 
Resonant frequency and Q  are measured again and the radiation resistance is  

4
measure

o

R N
Z Q

π=  (4.8) 

and
rad measure lossR R R= −  (4.9) 

Once the real part of the impedance is known the imaginary part can be found. This 
is best done with simulation software using a model of the transmission line created 
with a load of radR in parallel, or series, with a capacitor (or inductor as 
appropriate). The capacitor value is tuned to give the same resonant frequency as 
measured with the network analyser. It is not necessary to simulate the line feeds, 
only to measure from the end of the line. 

This technique can be adapted for other types of antennas by using a length of 
semi-rigid coax cut to length or printed transmission line terminated with the 
reference short and antenna. 

Even if an antenna has known impedance, or is resonant at the required 
frequency, this does not always mean that it will radiate effectively. It is essential to 
measure the performance using a body phantom with the transceiver in the case and 
sense or stimulant wires attached. The Wheeler Cap is also useful in measuring 
antenna efficiency. 
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Figure 4.10 Resonant line measurements. 

4.6 Matching Network 

Once the impedance of the patch is known within a reference liquid, it can be 
matched to the transceiver. When implanted, a transceiver will be capable of 
optimisation if it has a built-in variable tuning element. This is typically an array of 
capacitors that can be switched in or out across an RF terminal. This will enable the 
implant to be retuned each time it is used to help counter some of the effects of the 
implant moving or body changes. 

A typical transceiver circuit is intended for use in the MICS frequency band of 
402MHz to 405MHz. The maximum radiated power allowed in this band is 25 W
(-16dBm), but antenna gains in implants are usually very low and more power can 
be generated at the transmitter to compensate for loss through the body. 
Additionally, link budgets are also frequently such that the maximum allowed 
radiated power is required. 

The antenna tuning circuits are required to present an optimum load impedance 
to the transmitter and voltage step-up to the receiver. It should be noted that this 
does not necessarily lead to a conjugate impedance match.  

4.6.1 Transmitter Tuning 

A typical transmitter is capable of producing an output signal into the load of 2V 
peak-peak maximum, with a maximum peak current of about 10mA. Maximum DC 
to RF conversion efficiency is obtained when using the full voltage swing, as for 
any particular power output this will require minimum supply current. The tuning 

Network 
Analyser

Port 1 Port 2

Test Quarter 
Wave Line 
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circuit is also required to provide a degree of harmonic rejection for regulatory 
reasons; exactly how much is dependent upon the antenna gain and impedance at 
the harmonic frequencies. Maximum efficiency is obtained when the output devices 
are loaded with a purely resistive load, but because of the effects of stray capacity, 
as well as the provision of internal variable tuning capacity on the output of the 
transmitter, the actual load presented to the transmitter output pad is required to be 
inductive.

The efficiency, , of the tuning network is determined by the ratio of unloaded 
Q  (Qu) to loaded Q (Qw), i.e.,

1 100%w

u

Q
Q

η = − (4.10)

The use of too low a value of wQ should be avoided, however, as the harmonic 
attenuation of the network will be reduced. Usually, a value of wQ between 10 and 
15 is a reasonable compromise. However, the harmonic attenuation may well be 
greater than would appear at first sight to be available from such a low value of Q .
This is because the impedance presented by the network at the harmonic 
frequencies may be much lower than at the fundamental frequency, resulting in the 
harmonic current generating a much lower voltage across the input of the network. 

Too high a value of working Q should also be avoided. This is because the 
increased Q  leads to an increase in circulating current within the circuit, and losses 
are proportional to the square of the circulating current thus doubling the Q
increases the actual power lost by four times. 

The first step in designing the transmitter-tuning network is to determine the 
required RF output power, oP . This is derived from the required radiated power, 
less the antenna gain and matching circuit losses. Since the latter are unknown at 
this stage, the process is iterative. 

To determine the resistance presented to the transmitter, first establish the 
maximum voltage swing by  

( )2
0.7071 / 2pp

L
o

V
R

P
= (4.11)

where LR  is load presented to the transmitter. For 2 ppV  (4.11) becomes (4.12). 

0.5 /L oR P=  (4.12)

For a maximum available current of 10mA, the lowest value of LR is 200Ω. A 
circuit can now be chosen which provides load impedance to the power amplifier of 
0.5 / oP Ω in parallel with a tuning capacitance. In many cases, the maximum power 
will be limited either by the available power supply current or by regulatory 
limitations on maximum radiated power. 
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4.6.2 The L Network  

The simplest network is the L network shown in Figure 4.11 as it uses only two 
components. Easing design, the capacitive arm is internal to the device and only an 
external inductor is required. 

Figure 4.11 L network matching.

There are certain limitations in such an approach. The antenna impedance is 
constrained in terms of the amount of inductive reactance it can have, and the 
working Q is given by  

/ 1w L sQ R R= −  (4.13) 
                              

where LR is the parallel load resistance presented to the device, and sR  is the sum 
of the inductor loss resistance and the resistive part of the antenna impedance. sR
must be less than LR . Note that especially in the case of electrically small antennas, 
this resistance is not usually the radiation resistance of the antenna as other losses 
may dominate. 

Where the antenna impedance is capacitive, the value of inductance can be 
increased to resonate the antenna circuit. For the L network, the following equations  
apply. 

' / 1L ant L antX R R R= −  (4.14) 

/ 1C L L antX R R R= −  (4.15)

The total value of inductive reactance is '
L L antX X X= + , where antX is negative for 

capacitive antenna impedance and positive for an inductive antenna impedance. 
The required value of CX  will typically lie between 60 and 390  at 403MHz 

for tuning with the internal capacitor. Lower values of CX  can be accommodated 
with an external capacitor. The effects of the inductance of the bond wire 
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connecting the IC output pad to the inductance must also be considered. This 
inductance will be of the order of 1nH/mm. The effect of this should not be ignored. 

4.6.3 The π  Network 

The  network shown in Figure 4.12 has certain advantages in that the Q  of the 
circuit is relatively independent of the impedance transformation required. It is also 
able to handle antennas with greater inductance than the L network. The wQ is

1
/L CR X , meaning an external capacitor will be needed, and the tuning range of the 

internal tuning circuit will be limited, as typically values of 
1CX  of 20 to 50  will 

be required. 

Figure 4.12 The  network. 

Equations for the  network are 

1
/C L wX R Q= (4.16)

( )2

1/ 2

2 1 /
L ant

C
w L ant

R R
X

Q R R
=

+ −
 (4.17) 
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Q R R R X
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Q
+

=
+

 (4.18)

In practice, the value of 
2CX is decreased by the amount of parallel capacity of 

the antenna (in which case the network appears to be an L network), or is increased 
by the amount of capacity needed to resonate an inductive antenna. When antR is
small, the value of 2C  may become excessively large, thus limiting the application 
of this circuit. When LR is high, the working Q may be higher than desirable 
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because of the unavoidable stray capacities across the input to the network. Again, 
the parasitic inductance of the bond wire from the output pad to the inductor must 
be accounted for. 

4.6.4 The T and π -L Networks 

These networks are identical in circuitry. The T network is the ‘dual’ of the 
network, as illustrated in Figure 4.13. It claims to show somewhat greater 
efficiencies under certain conditions. The design technique is to treat the circuit as 
consisting of back to back L networks, with a centre ‘image’ impedance at 

2C chosen to provide suitable wQ values. This image impedance is higher than the 
value of LR and thus is more subject to stray capacity problems. The equations are: 

1 1sL L w CX R Q X= + (4.19)

2L LX R B=  (4.20) 

( )
2

/C wX A Q B= +  (4.21)                       

where 

( )21L wA R Q= +  (4.22) 

and
( )/ 1LB A R= −  (4.23)                        

1sCX is the series equivalent circuit of LR and
1CX . At a given frequency a parallel 

circuit of a resistance and a reactance has a parallel equivalent and vice-versa. The 
series equivalent of a parallel circuit is found in (4.24) and (4.25). The parallel 
equivalent of a series circuit is shown in (4.26) and (4.27). 

( )2
1 /

p
s

p p

R
R

R X
=

+
(4.24)

    
/s s p pX R R X=  (4.25) 

( )( )21 /p s s sR R X R= +  (4.26) 

/p s p sX R R X=  (4.27) 

                    
where sR = resistance of series equivalent circuit, pR = resistance of parallel 
equivalent circuit, sX = reactance of series equivalent circuit, and pX = reactance 
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of parallel equivalent circuit. As with the L network, similar limitations to the 
amount of antenna inductive reactance apply. 

As a -L, the circuit uses a  section to reduce the impedance to an image 
impedance usually of value L antR R . The L section then reduces this to the 
antenna impedance, and tunes out any antenna reactance. The same problems of 
allowable antenna reactance apply as in the case of the L network, but as the 
impedance transformation ratio is reduced the wQ of the L network is also reduced, 
allowing an improved efficiency. The extra section also provides increased 
harmonic rejection as compared with the simple  network.  

Figure 4.13 The ‘T’ or ‘ -L’ network. 
               

4.6.5 Parasitic Effects 

The effect of stray capacitance and resistance in inductors also needs to be 
considered, because operating at close to the Self-Resonant Frequency (SRF) of the 
inductor leads to large changes in Q and apparent inductance. In general, it is 
recommended that the inductance SRF should be at least three times the operating 
frequency. Discrepancy between expected and actual harmonic radiation levels 
when operating with an antenna may often be traced to this cause.  

The actual difference in parameters caused by an approach to self-resonance 
can be found from the following. For an inductor: 

( )221
actual

apparent
R

R
λ

=
−

(4.28)

where apparentR and actualR  refer to the parasitic resistance of the inductor and  

( )221
actual

apparent
L

L
λ

=
−

 (4.29) 
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where is the ratio of actual frequency to self-resonant frequency that is available 
from the manufacturer. 

It should be noted that the networks suggested all have the property of using a 
series inductor from the output of the device, thus allowing absorption of the stray 
inductance caused by the bond wire. 

4.6.6 Network Choice 

The choice of which network to use is dependent upon a number of factors. When 
one antenna is required for operation at the MICS band and 2.4GHz (wake-up) the 
403MHz network must be chosen so that it presents high impedance at 2.4GHz. 
Similarly, the 2.4GHz tuning system must not have appreciable shunting effect at 
403MHz on the antenna. This suggests that an L or T or π-L network has 
advantages, insofar as the series inductor at the antenna end of the network will 
present reasonably high impedance to the 2.4GHz wake-up signal.  

Figure 4.14 Multi-resonant network. 

However, this advantage may not be realised in practice if the series inductor 
has too low an SRF, and thus in the demonstration implementation where an L 
network is used the inductor has been split into two parts. Connected to the antenna 
is a small inductor arranged to be parallel resonant at 2.4GHz, and thus presenting 
high impedance at that frequency. The other inductor in series enables the correct 
amount of inductance at 403MHz to be achieved, as shown in Figure 4.14. 

C1 and L2 are resonant at about 2.4GHz. Typical values are about 1.9nH and 
2.2pF, resonating at 2.46GHz. L1 is the remainder of the 403MHz tuning 
inductance. Without the splitting of the inductance the SRF of this inductor 
(typically in the order of 10’s nH) would have been below 2GHz, and the circuit 
would therefore have looked like a capacitor at 2.4GHz. 

Whichever network is used, there must be DC isolation to ground through the 
antenna and this may necessitate the addition of a series capacitor. In general, it is 
desirable that such a capacitor be added at a medium impedance point. At a high 
impedance point, the effects of parasitic capacity to ground may cause problems, 
while at very low impedance points the series resistance of a large capacitor may 
increase losses to an unacceptable value. 
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4.6.7 Radio Frequency Losses in Components and Layout Issues 

In all cases, after the initial values have been established, substitution of more 
accurate models of inductors (including the available Q and the SRF) are required 
to establish the circuit efficiency. It may then be necessary to ‘fine-tune’ the design 
for a different power output from the transmitter. In general, losses in the capacitors 
are negligible in comparison with those in inductors, especially for very small chip 
inductors or printed inductors mounted very close to a ground plane. Microwave 
type surface mounting chip porcelain or sapphire low loss type capacitors are 
generally preferred, rather than the lower cost NP0 ceramic types.

Equations (4.28) and (4.29) for the apparent values of inductance and resistance 
of inductors at frequencies removed from the SRF will allow extrapolation of 
manufacturers’ data where necessary. 

Here are a few rules that may be useful when laying out a matching network: 

• Remember the track will also influence the performance and 
should be simulated along with the added components. 

• Lay out close inductors at 90° to each other. This minimises 
mutual coupling. 

• Take all of the tracking, wiring and feed through into account 
when designing a matching network. 

• As inductor values increase the self-resonance will reduce. A high 
value inductor may behave like a capacitor at high frequency. 

• When building a transceiver be consistent in the choice of 
component manufacturer and family. A nominal component value 
may have different parasitics between manufacturers. 

4.6.8 Receiver Tuning 

The receiver has a very high input impedance, being typically >10k  in parallel 
with a small capacitance. Conjugate matching of the antenna to the receiver is 
undesirable because half of the received EMF is lost in the antenna internal 
resistance, while the high input impedance of the receiver allows for a degree of 
voltage step-up. Additionally, conjugate matching does not give the optimum 
source resistance for lowest noise. The amount of voltage step is proportional to the 
working Q of the network, and because of the difficulty of maintaining tuning 
accuracy as the working Q value increases (always assuming that the Q value is not 
limited by the unloaded Q values of available components), it is not considered 
desirable to have too high a voltage step-up. Where the step-up is such that the 
working Q  is dominated by the values of Q  in the available components, the 
losses may well reduce the benefits of attempting to obtain a large step-up. 

Link budget calculations are based on Effective Radiated Power (ERP) and 
antenna gains. The resulting power available for the receiver should be considered 
as being an EMF voltage delivered to the input impedance with a source impedance 



136    Body Sensor Networks 

determined by the step-up ratio, after losses in the components have been taken into 
account. Thus the voltage available at the receiver input will be 

( )
1
2

t L g L LE P P A T R= (4.30)

where E is the available RMS EMF, Pt is the transmitted ERP in watts, LP  is the 
path loss as a ratio, gA is the receive antenna gain as a ratio, LT is the tuning circuit 
losses as a ratio (which can be derived from (4.10)) and LR is the resistive part of 
the load impedance for the transmitter (assuming the use of a tuning circuit 
common to both receiver and transmitter).  

Where receive and transmit use separate antennas, the receiver input tuning can 
be designed for any desired step-up, bearing in mind the limitations caused by too 
high a value of wQ in terms of tuning sensitivity, etc. It must be remembered that 
the various parasitic components, such as bond wires and stray capacities, must be 
accounted for when evaluating the performance of any particular circuit. 

4.6.9 Base Station Antennas 

The implanted device and external base station antenna implementations are often 
very different. In the case of the implant, space considerations may well prevent the 
use of separate antennas for the frequencies used for communication and ‘wake up’ 
(MICS and 2.4GHz respectively). The base unit will have room for larger antennas 
and preferably separate antennas for 403MHz and 2.45GHz (if used). The 403MHz 
transmit and receive paths can be split at the antenna with a switch enabling 
optimisation of both paths separately. The base unit may use external filters in the 
receive chain to provide maximum rejection of unwanted signals. The loss of such 
filters (e.g. a SAW filter) may be offset by using an external RF amplifier. The gain 
is not too important as long as it is sufficient to overcome the filter losses; such an 
amplifier will also need a very low noise figure, and a sufficiently large signal 
handling range. 

The base station could also use more than one antenna to overcome the effect of 
multi-path fading and polarisation, as detailed by Johansson [4], reducing the signal 
strength. If space permits, an arrangement of four antennas with suitable switching 
and software optimisation can be employed. This is shown in Figure 4.15. 

4.7 Propagation 

The propagation pattern of the antenna, case and any wires for sense or stimulation 
is required in order to predict the performance of the implant within a body. The 
Perspex tank filled with a liquid as described above is a useful first representation 
of a body. This can be done in a lab, or preferably in an anechoic chamber, with 
care taken to seal the test transceiver from the liquid. 
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Figure 4.15 Four antennas for spatial and polarisation diversity. 

Radiation patterns are made with the body phantom using a self-contained 
transmitter immersed in the liquid. If the antenna were to be attached to a cable then 
it would contribute to the radiation pattern. This can be minimised, but not 
eliminated, with the addition of ferrite beads. The patch attached to an implant case 
within a body does not have an earth (ground) connection, meaning the case will 
radiate in anti-phase to the patch. This requires that electronics be self-powered and 
measured as a whole. 

Measurements should be taken with the test device immersed in the liquid and 
rotated on a horizontal and vertical axis. If vertical rotation is difficult then the 90o

points should be measured. Horizontal rotation is straightforward as the test device 
can be rotated with the tank.  

Another important aspect of propagation is polarisation. Human and animal 
testing has found that the body will cause polarisation of the signal along its long 
length [4]. This has also been observed with the tank measurements. It has been 
found that with a vertical tank the polarisation also tends to vertical.

4.8 Materials 

An implant case is typically titanium or implant-grade stainless steel. In-body wires 
are either platinum or platinum/iridium that have conductivity in the order of 
9.52MSm-1 and 5.2MSm-1 respectively. In comparison, the conductivity of copper, 
considered one of the best conductors, is 58MSm-1. At present these are the only 
two conductors that are used outside of the implant case. Metals such as silver and 
copper are toxic and blood will erode gold. This low value of electrical conductivity 
will impede the performance of the antenna, as some energy will be absorbed by the 
resistance of the metal. Therefore, it is necessary to maximise the thickness of the 
conductor to minimise the added resistance and losses. 

The substrate needs to be non-toxic, mechanically stable and insoluble in blood 
or other body liquid. Alumina is a material found to be acceptable. Other substrates 
that have been considered include titania, zirconia and multi-layer substrates. Care 
must be taken to ensure the suitability of the materials. 
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The entire implant is often coated in a passive material such as Parylene. Table 
4.4 shows Parylene has good water resistant properties compared to other 
commercially available materials and is acceptable for in-body use. Typical 
coatings are in the order of a few microns thick and will have no effect on the RF 
performance of the antenna. Coating cannot be used to isolate a conductor, such as 
silver from the body, as blood will dissolve most plastics and organic coating and it 
will become porous.  

Table 4.4 Water uptake and other parameters of various polymers, noting these are not 
all biocompatible [12]. 

Material rε Loss Tangent Water Absorption % 

Parylene (C type) 2.9 0.013 0.01 
Polyether ketone 3.4 0.005 0.11 
Polyether imide 3.2 0.0026 0.25 

Polyether ether ketone 3.3 0.0035 0.11 

4.9 Environment 

The human body may be considered a benign thermal and mechanical environment, 
with a temperature varying by just ±2°C and layers of fat and muscle that will 
partially absorb shocks. However, regulatory approval for implanted medical 
devices is extremely stringent. Implant grade components need to work over the full 
military temperature range and be able to withstand shock and vibration. The 
assembled implant needs to survive the wide storage temperature range that it may 
well be exposed to. An implant is also subject to harsh mechanical testing, 
including a drop test from two metres onto concrete for each of six faces (see 
EN45502). A layer of silicone may be sufficient to absorb the shock of impact. 

4.10 External Transceiver (Base Station) 

An in-body communication system relies on a base station that will transmit and 
receive signals from the implant and relay them to a user interface, such as a 
personal computer as shown in Figure 4.16. Less rigorous size restrictions on a base 
station mean larger antennas can be used. The power limit, including any antenna 
gain, remains at 25 W. The RF environment within a hospital or doctor’s office 
may be even more challenging than inside the human body, meaning adjacent 
channel signals need to be filtered out using a SAW filter (or similar). 
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Figure 4.16 Base station and PC. 

In the example shown above, the base station has a USB interface that also 
provides the power to the Base Station that eliminates the need for an additional 
power supply. Software needs to be written to operate the base station and an easy-
to-operate Graphical User Interface (GUI) is required. The interface for clinician 
use would typically show the user identification, download and upload data. For 
system development a more detailed interface is required. 

When designing a base station for use in a sterile hospital environment, care 
must be taken to avoid corners or rough surfaces that cannot be thoroughly cleaned. 
Professionals familiar with infection control should be consulted throughout the 
design. 

4.11 Power Considerations 

Implants are often designed to consume minimal battery power to extend their 
useful operating life. For example, a pacemaker may be expected to operate for up 
to ten years. Adding a radio link to an implant will cause an additional battery drain 
that needs to be minimised. As a simple rule of thumb, current demand will increase 
with frequency, transmitter power, receiver sensitivity and processing power. The 
receiver must be sensitive enough to detect the incoming signal with an acceptable 
error rate. A high error rate may be corrected by resending the data and error 
correction, but this increases power consumption. The transmitter must also 
produce enough power for the base station to receive with a low raw error rate. 

Leaving a receiver on to permanently listen for the base station transmission 
would require a current in the order of 2mA to 3mA – an unacceptable power drain 
on the battery. The implant needs to detect the base station transmission and start a 
data exchange session at short notice, on demand, all the while draining minimal 
battery current. One way to reduce the average current is to switch on a simple 
receiver for a short time at regular intervals. This is known as the “wake-up” 
receiver.

The wake-up receiver can use either the MICS band, or the ISM band where 
more radiated power is permitted. A typical example would be 2.45GHz where in 
excess of 100mW may be radiated (country dependant). The losses through the 
body will be greater than for the MICS band, but additional power will compensate 



140    Body Sensor Networks 

and the antenna will be closer to the desired size. It is possible to use the same 
implant antenna for both MICS and 2.45GHz with care in the matching networks. 
The wake-up receiver will be switched on at regular intervals for a short period, 
known as strobe mode. If a signal is detected, the wake-up receiver will switch on 
and detect if it is a genuine “wake-up” signal. This is a digital code designed to 
wake up the implant. If this code is not detected the receiver will revert to strobe 
mode.  

Once the code is verified then the remainder of the implant communication 
system, which typically includes the crystal oscillator, the Media Access Controller
(MAC) that controls the operation of the part, and the phase lock loop, will power-
up. Once the wake-up is complete an acknowledgment is transmitted. An example 
of a wake-up sequence and power consumption is shown in Figure 4.17. Once the 
acknowledgment is received a data transfer session can begin. 

When a data transfer session has finished, the part reverts to sleep mode with the 
wake transmitter strobing.  
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Figure 4.17 Wake-up sequence and current consumption for a typical implant 
RF transceiver (source: Zarlink Semiconductor). 

4.11.1 Battery Challenges 

In many applications, an ideal battery is the one that gives a constant voltage for as 
long as possible and the user changes the battery when the device stops working. In 
the case of implanted medical devices, this is obviously not possible.  

The lithium-iodine cell, most commonly used in pacemakers, has a very 
different behavior. The battery can be modeled as a voltage of about 2.8V in series 
with a resistor. The series resistor has a value of about 500  at the beginning of the 
battery life, and increases slowly to end up at 10 to 20k  towards the end of the 
battery life. Assuming a constant average current drain, the resulting battery voltage 
for the pacemaker electronics starts off at 2.8V and then gradually decreases with 
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time towards 2.0V, when the pacemaker battery should be replaced. It is then quite 
easy to measure the internal resistance of the battery, and the doctor and patient can 
be alerted twelve months before the battery needs to be replaced.  

Figure 4.18 shows a voltage versus time comparison for a typical watch battery 
and a lithium-iodine battery used in a pacemaker. Though the patient and the doctor 
benefit from this battery behavior, it is easy to see the challenges this poses for the 
designer of an implant system. On top of designing electronics that demand 
extremely little current, the designer must also cope with a voltage variation over a 
long operating life of the device. 

The other problem for the designer is the presence of a 500  resistor in series 
with the voltage source. If the transceiver draws 5mA during transmit the voltage 
drop across the resistor will be 5mA× 500  = 2.5V which is almost all of the 
battery voltage. The power source during a data transfer session must be primarily 
from a capacitor. 

Figure 4.18 Voltage versus time comparison for a typical watch battery and a 
Lil2 battery used in a pacemaker. 

4.12 Defibrillation Pulse 

An implant within the chest cavity may need to survive a defibrillation pulse. As 
well as the external defibrillator, Implantable Cardioverter-Defibrillators (ICDs) 
that deliver a pulse directly to the heart are becoming more common. The pulse can 
be biphasic with a peak of 800V applied to the heart, and last several milliseconds. 
A pacemaker, internal heart monitor, ICD or other chest cavity implant, along with 
an antenna and delicate transmitter and receiver electronics, will need to survive the 
pulse.   

Care must be taken in the design of the matching network to reduce the energy 
reaching the electronics to within its capability using electrostatic damage 
protection diodes. Additional protection diodes should be used with care as they 
will add capacitance and will be part of the matching network. The protection needs 
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to be designed with the knowledge of the transmitter/receiver electronics capability 
and the expected defibrillation pulse amplitude and duration. 

More details can be found in an on line article by the American Heart 
Association [11]. 

4.13 Link Budget 

The link budget determines if the link will work by taking into account transmit and 
receive powers, antenna gains, path losses and receiver sensitivity. The signal-to-
noise ratio will determine the un-corrected bit error rate for a given range, i.e.,

( ) ( ) ( ) ( )
( ) ( ) ( )

/ 204 10logt

r t

S N dB P dBW dBW B

G dBi P dB G dBi

= + −

+ − +
(4.31)

where ( )tP dBW is the transmit power in dB Watts, 204(dBW) is thermal noise 
power for a 1Hz bandwidth, B is the bandwidth in Hz, and ( )rG dBi is the receive 
antenna gain in dB, P is the path loss in dB, this includes the free space (Pf) and 
body (Pb) losses, where P=Pf+Pb, that can be considerable, and Gt is the transmitter 
antenna gain in dB.

The path loss is comprised of losses through the body, which can be in the 
order of 20dB, and the free space loss is  

Pf = ( )2/ 4 dλ π  (4.32) 

There may also be losses from multi-path propagation causing fading. From the 
above it is clear that with a low upper limit on transmit power, significant body 
losses and a low implant antenna gain, low noise design of the receiver is critical. 
The reliability of the link will be improved with the addition of error correction and 
with re-transmission of data that is in error. 

4.14 Conclusions 

The implant antenna is critical to the operation of the data link, and must be 
designed as part of the implant to make the best use of the available area. There are 
several antenna options depending on the given application. Testing to determine 
antenna characteristics is important to ensure the matching network can be 
effectively designed. Care should be taken when measuring the impedance of 
electrically small antennas.  

In comparison to strict size limitations on implanted devices, designers should 
take advantage of the additional space afforded by external base stations for 
antennas, electronics and filtering. Multiple antennas can be used if there is a 



4. Wireless Communication  143

polarisation or multi-path fading problem. A very low noise receiver is needed in 
both the base station and the implant. Error correction can enhance data transfer, 
but at the cost of longer power-up time and battery drain. The battery will typically 
not be able to source the peak current used during data transfer, so a large value 
capacitor will be needed.  

Along with wireless performance and power issues, designers must address a 
multitude of biocompatibility concerns and regulations governing the design of 
implanted devices and in-body communication systems. The integration of a high 
data rate transceiver will enhance the operation and capabilities of existing 
implanted medical devices, and open the door for new techniques that will lead to 
improved treatments and better quality of life for patients.  
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5.1 Network Topologies 

Every network has a topology that determines the way that different devices on the 
network are arranged and how they communicate with each other. Here we distin-
guish between physical and logical topologies. The former refers to the physical 
layout of the network, i.e. the way devices are physically connected to the network 
through the actual cables or direct wireless communication links. In contrast, the 
logical topology of a network refers to the manner that data flows through the net-
work from one node to the other without worrying about the physical interconnec-
tion of the devices for transporting a packet from a source to a destination device. 
The two lower layers of the Open Systems Interconnection (OSI) reference model 
[1], the physical and data link layer, define the physical topology of a network, 
while the network layer is responsible for the logical topology. 

Table 5.1 provides an overview of the most common topologies applicable for 
wireless sensor networks. Each topology presents its specific set of advantages and 
disadvantages regarding network characteristics such as latency, robustness, capac-
ity and the complexity of data routing and processing as shown in Table 5.2. The 
star-mesh hybrid topology seeks to combine the advantages of the star topology 
with the ones of the mesh topology and additionally provides the highest degree of  
mobility for star clusters. 

The topology is a choice of application design. The application developers have 
to balance sensor node costs, battery drain, complexity of routing, robustness, scal-
ability, latency, mobility, and spatial coverage to meet the unique characteristics 
and performance requirements of their application. In the following sections, we 
will present some typical application scenarios of BSNs to illustrate the usage of the 
different network topologies. 
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  Table 5.1 Common network topologies. 

Point-to-point network

The simplest topology consists of only two de-
vices directly connected with each other. 

Star network 

All devices are connected to a single central 
controller often referred to as coordinator or 
master. The peripheral nodes are called slaves. 
Slaves can only communicate with the master. 
Communication between slaves requires pass-
ing all data through the master. 

Mesh network 

Any device can communicate with other de-
vices as long as they are in range of one an-
other (“peer-to-peer network”). Multi-hop net-
working protocols enable routing of packets 
from one device to the other on the network. 

Star-mesh hybrid network 

This allows connecting a mesh network with 
one or more star networks or several star net-
works with each other. A mixed star and mesh 
network combines the simplicity of the single-
hop star topology with the extendibility and 
flexibility of the multi-hop mesh topology.  

Cluster tree network 

The cluster tree topology is a special case of a 
multi-hop mesh network where there is always 
only a single path between two devices. The 
first device starting the network becomes the 
root of the tree. Another device can join the 
network as “child” of the root node and in turn 
allow other devices to join the network through 
that device. Devices are aware of their “parent” 
node and any “child” nodes. This hierarchical 
topology reduces routing complexity. 
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Table 5.2 Advantages and disadvantages of topologies. 

Topology Advantages Disadvantages 

Star • Simplicity 
• Simple and cheap slave nodes  
• Low power consumption of slave 

nodes
• Low latency and high bandwidth 
• Centralised systems 

• Dedicated central node  
• Limited spatial coverage 
• Single point of failure 
• Poor scalability, small number of nodes 
• Asymmetric power consumption (master 

consumes much more energy than the 
slaves)

• Inefficient slave-to-slave communication 
• Distributed processing 

Mesh • Distributed processing 
• Peer-to-peer communication 
• Very fault tolerant 
• Scalable, many nodes possible 
• Large spatial coverage 
• Low/medium complexity  
• Energy consumption can be balanced 

among nodes  

• Nodes used must have same basic func-
tionality, including routing capabilities 
(may be an overkill in some applications 
as it increases cost) 

• Complexity of routing  
• High latency and low bandwidth 

Star-mesh 
hybrid 

• Low/medium complexity (if nodes 
can be classified as slaves or masters 
before deployment) 

• Large spatial coverage 
• Low latency and high bandwidth be-

tween master and its slaves 
• Good for local actuation or data ag-

gregation 
• High reliability possible 
• Scalable, many nodes possible 
• Power consumption can be balanced 

among masters and it is asymmetri-
cal between master and slaves 

• Nodes acting as slaves can be rela-
tively inexpensive 

• High complexity (if all nodes can act as 
masters) 

• High latency and low bandwidth for 
multi-hop communication 

• Power consumption is asymmetrical be-
tween master and slaves 

Cluster
tree

• Low power consumption of leaf 
nodes

• Large spatial coverage area 
• Many nodes possible 
• Large spatial coverage 
• Medium complexity (rerouting is re-

quired when a node in the tree dies) 

• Medium scalability (root of the tree is a 
bottleneck)

• Low reliability (node failure effects rout-
ing) 

• High latency and low bandwidth 
• Asymmetric power consumption (nodes 

in the tree backbone consume more) 
• Nodes used must have same basic func-

tionality, incl. routing capabilities (may 
be an overkill in some applications as it 
increases cost) 
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5.2 Body Sensor Network Application Scenarios 

As mentioned in Chapter 1, wireless sensor networks are an enabling technology 
for the application domain of unobtrusive medical monitoring. This field includes 
continuous cable-free monitoring of vital signs in intensive care units [2], remote 
monitoring of chronically ill patients [3-7], monitoring of patients in mass casualty 
situations [8], monitoring people in their everyday lives to provide early detection 
and intervention for various types of disease [9], computer-assisted physical reha-
bilitation in ambulatory settings [10], and assisted living for the elderly at home 
[11, 12]. In these scenarios, the sensors range from on-body sensors, to ambient 
sensors such as positioning devices, to mobile devices such as cellular phones or 
PDAs. Depending on the application scenario, body sensor networks are employed 
either in a stand-alone context or in combination with mobile phones or ambient 
sensor networks. 

5.2.1 Stand-Alone Body Sensor Networks 

A stand-alone body sensor network consists of small wireless nodes on or in the 
immediate vicinity of the patient’s body, conjointly providing the functionality for 
sensing and processing required by the application. In the simplest scenario, a cen-
tral node gathers and records the readings of the biosensors such as ECG, EMG, 
EEG, SpO2, blood flow, and blood pressure over a period of time for subsequent 
offline interpretation and trend analysis by a clinician. The data can be enriched 
with context information by attaching further sensors including accelerometers and 
gyro meters to the body. By providing capabilities for local processing of the meas-
urements and user I/O, the patient is alerted in a timely manner when her state of 
health changes for the worse.  

Figure 5.1 Star- vs mesh-based body sensor network.
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Both star- and mesh-based topologies are applicable to this class of application 
as depicted in Figure 5.1. The star topology implies a centralised architecture where 
the intelligence of the system is concentrated on a central node which is superior to 
the peripheral sensors in terms of resources such as processing, memory, and 
power. A star network is a common choice. For instance, the UbiMon project [6] 
takes this approach and utilises a Personal Digital Assistant (PDA) as the local 
processing unit for collecting, displaying and analysing the sensor signals. It is ad-
vantageous in situations where a PDA is an inherent part of the system and direct 
communication between sensors is not required. 

In contrast, the BASUMA project [3, 13] pursues the concept of a distributed 
system with a peer-to-peer network without central controller. As a consequence of 
shifting the intelligence towards the sensors, the body sensor network consists of 
smart, self-contained, wireless sensors that communicate with one another. Because 
peer-to-peer networks are not dependent on any particular component, they are fail-
ure-tolerant, i.e. even if one component fails the remaining parts of the system con-
tinue to operate. This approach is preferable when sensors need to communicate 
with each other. A non-invasive continuous cuffless blood pressure sensor is a good 
example for this: by combining the signals from at least one distal pulse wave sen-
sor and a single lead ECG, the pulse wave velocity can be computed that will show 
a linear relationship with the blood pressure [14]. 

There remains an interesting challenge to be considered with regards to wireless 
body sensor networks. If there are no physical wires connecting the sensors into the 
network, how is a body sensor network to be set up by the user? One proposed solu-
tion [15] is to equip all sensors with an IR-receiver and to use a setup pen which 
emits a unique identifier via IR to limit the scope to a single patient. All sensors re-
ceiving the same identifier form a network. The Active Digital Aura (ADA) [13] 
technology takes a similar approach: a tag is worn on the body that capacitively 
couples a low-frequency RF signal into the body, which is modulated with a unique 
identifier. Only sensors attached to the body can pick up this identifier and form a 
network. 

5.2.2 Global Healthcare Connectivity 

The MobiHealth project [4] and its successor the HealthService24 project [5] de-
veloped a health service platform based on a mobile phone which serves as a mo-
bile base station for the wireless sensors worn on the body. It forwards their meas-
urements wirelessly using UMTS or GPRS to a service centre that acts as an 
intermediary between patients and healthcare providers. It provides three services: 
collecting and storage of the received data (data repository), forwarding of data to a 
doctor or medical centre (streaming service), and analysis of the data received and 
the sending of an alarm or a reminder signal to a predefined destination using SMS 
(feedback service).  
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Figure 5.2 Body sensor network connected to hospital network. 

The fundamental difference here to the UbiMon [6] and BASUMA [3] projects 
is that no processing is done locally. Instead of passing only relevant data or alerts 
to a doctor or a medical centre when detecting a critical event, the concept of Mo-
biHealth is to pipe all sensor readings to a remote data centre where the processing 
takes place. 

Figure 5.2 illustrates the concept of using a mobile phone acting as a gateway 
for providing connectivity between a body sensor network and a remote medical 
centre through the Internet, hence enabling the patient to be fully mobile. Alterna-
tives to a mobile phone include a WLAN-enabled PDA or a DECT-based cordless 
phone for providing access to the Internet via a wireless LAN or DECT infrastruc-
ture. 

If the body sensor network has a star topology, the gateway is predestined to 
take over the role of the coordinator. In addition to bridging different communica-
tion technologies, the gateway may also translate the lightweight protocols used in 
the body sensor network to the established medical standards such as HL7 [35] for 
consumption of the acquired vital signs by clinical information systems. 

5.2.3 Pervasive Sensor Networks 

We envision in the future pervasive sensor networks combining wearable and am-
bient sensing. Ambient sensors would be invisibly integrated into the environment. 
For example MoteTrack [16], a decentralised RF-based localisation system, con-
sists of an ambient radio beacon infrastructure. The location of a mobile wireless 
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node is computed using a received radio signal strength signature from numerous 
beacon nodes to a database of reference signatures. Other examples of ambient sen-
sors are systems for determining the current activity of a user. Recently, we have 
demonstrated the new concept of ambient health sensors for measuring medically-
relevant parameters outside the hospital with minimal impact on a patient’s quality 
of life [17]. This approach relies on “invisible” ambient health sensors integrated 
into someone’s life, e.g. a chair, a bed, or a personal health area, in order to con-
tinuously monitor medical condition and fitness. This allows, for example, the de-
termination of the heart rate of a person sitting in a chair without the need for addi-
tional body-worn devices. 

The ambient sensors are typically part of a stationary wireless sensor network. 
In contrast, a body sensor network is mobile as it moves with the user. For connect-
ing to the ambient network, a mobile sensor needs to discover an ambient sensor in 
range and then join the network via the sensor just discovered. When the mobile 
sensor moves on, it has to regularly repeat this discovery and association procedure 
to stay connected to the ambient network. Applying this approach to all sensors of a 
mobile body sensor network would be rather inefficient. A better way is to select 
only one sensor of the body sensor network to act as a bridge to the ambient sensor 
network. In this case the bridge sensor alone has to perform these association pro-
cedures when the body sensor network is in motion.  

Figure 5.3 illustrates this approach for a body sensor network with star and 
mesh topology, respectively. In a star-based body sensor network, the coordinator 
acts also as a bridge to the ambient sensor network. The resulting pervasive net-
work has a hybrid star-mesh topology. In a mesh-based body sensor network, one 
of the sensors has to be selected to take the role of acting as the bridge to the ambi-
ent sensor network.  
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Figure 5.3 Mobile body sensor network connected to ambient sensor network. 
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5.3 Wireless Personal Area Network Technologies 

5.3.1 Overview 

The advent of smart wireless sensors that are able to form a body sensor network 
would not be possible without the availability of appropriate and inexpensive low-
power short-range transceivers for low to moderate data rates. These are capable of 
transmitting real-time data with a latency of typically less than one second within a 
range of up to five meters. In order to achieve cost-effective, flexible and preferably 
interoperable solutions, it is almost a necessity to abandon proprietary technological 
approaches – even though they might be superior for specific applications – and in-
stead choose standardised wireless technology as the basis of a BSN. By means of 
standards, the short-range wireless communications market has a far better chance 
to proliferate quickly and hence, costs will be driven down at the same time as the 
product and feature ranges increase. 

Current standardisation efforts affect most of the layers of a communication 
stack, starting from the Physical (PHY) layer, including the Medium Access Control
(MAC) layer and reaching into higher layers, such as networking or routing layers, 
and sometimes even the data representation and application layers. Different stan-
dardisation bodies may work in a cooperative fashion, as is the case with ZigBee 
and IEEE 802.15.4, as shown in Figure 5.4. 

Figure 5.4 Communication protocol stack. 

In the following subsections, we present an overview of the current candidate 
technologies for BSN in the field of wireless short-range connectivity, such as the 
IEEE 802 family of Wireless Personal Area Networks (WPANs) and Wireless Lo-
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cal Area Networks (WLANs), Bluetooth, and ZigBee. We show that for BSNs, an 
IEEE 802.15.4-/ZigBee-based system is a favoured approach since other WPAN 
and WLAN solutions have major drawbacks in this context.   

5.3.2 The Wireless Regulatory Environment 

Electromagnetic, i.e. radio, transmission is always subject to national or interna-
tional regulation. In Europe, the Electronic Communications Committee (ECC) of 
the European Conference of Postal and Telecommunications Administrations
(CEPT) is the relevant regulation body, as it brings together the radio and telecom-
munications regulatory authorities of the 46 CEPT member countries. ECC devel-
ops policies on electronic communications in CEPT member countries, and harmo-
nises the efficient use of satellite orbits, numbering resources and the radio 
spectrum [18]. In the US, the Wireless Telecommunications Bureau of the Federal 
Communication Commission (FCC) regulates the use of the radio spectrum [19]. 

The portions of the radio spectrum that are most important for BSNs are VHF 
radio (< 300MHz), UHF radio (e.g. 315, 433, 868 – 928MHz), the worldwide 
2.4GHz ISM (Industrial, Scientific and Medical) band, the worldwide 5GHz band, 
and, for UWB, the 3 – 10.6GHz band in the US and the EU (currently under study).  

In the EU, the spectrum allocations for non-UWB Short-Range Devices (SRD) 
are set forth in ERC Recommendation 70-03 [20]. The ERC Recommendation de-
vises classes of radiated power, channel spacing and duty cycles, and sets the regu-
latory parameters per field of application. BSNs fall into the category of non-
specific SRDs (Annex 1 to ERC/REC 70-03 [20]), whereas WLANs are subject to 
Annex 3, Wideband Data Transmission Systems, of ERC/REC 70-03 [20]. Another 
interesting field of applications is treated in Annex 12 to ERC/REC 70-03 [20], Ul-
tra Low Power Active Medical Implants as will be discussed later.  

Having a closer look at Annex 1 of non-specific SRDs [20], it becomes obvious 
that there are stringent restrictions to the important UHF frequency bands from 300 
to 3,000MHz. In most cases, either the maximum radiated power is limited to 1 to 
10mW, or the band itself is limited to less than 1MHz of bandwidth, or the maxi-
mum transmit duty cycle is restricted to 10%, 1% or even 0.1%. There are only two 
wider bands with few restrictions available, 433.05 – 434.79MHz, and 2,400 – 
2,483.5MHz (ISM). It is not surprising that these are the most crowded bands today 
and their users have to live with interference problems. A quieter band lies from 
868 – 868.6MHz and was chosen by IEEE 802.15.4 for systems operating at 1GHz 
or below. However, it offers a mere 600kHz of bandwidth, and its usage is re-
stricted to a 1% duty cycle. Consequently only occasional data transmissions and 
very limited data rates are possible in this band. 

The wireless industry is hoping for new or relaxed EU radio bands, particularly 
for an expansion of the limited 868 – 870MHz band down to 863MHz for non-
specific SRDs using spread-spectrum techniques with power levels up to 25mW. 
The ECC prepared a report named “Strategic Plans for the Future Use of the Fre-
quency Bands 862 – 870MHz and 2,400 – 2,483.5MHz for Short Range Devices” 
in 2002, which is available via the European Radiocommunications Office [18]. 
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 Table 5.3 86x MHz SRDs in Europe.

The well-known 2.4GHz ISM band ranges from 2,400 to 2,483.5MHz 
(83.5MHz bandwidth) in the USA and Europe, and from 2,471 to 2,497MHz 
(26MHz) in Japan. For wide-band systems in Europe, the maximum radiated power 
is 100mW EIRP for frequency-hoppers and 10mW/MHz for all other wide-band 
systems, e.g. those employing OFDM or DSSS. For 2.4GHz non-specific SRDs, the 
output power is limited to 10mW EIRP. There are no restrictions regarding duty 
cycle or channel spacing. 

Except for IEEE 802.11a, which operates in the 5GHz band, and the newer 
IEEE 802.15 UWB-based proposals, the entire IEEE 802 family of wireless stan-
dards rests on the 2.4GHz ISM band: IEEE 802.11 WLANs and IEEE 802.15 
WPANs. 

Special bands exist for medical applications: these are Medical Implant Com-
munications Service (MICS) and Wireless Medical Telemetry Service (WMTS). 
The  MICS is an ultra-low power, unlicensed, radio service available worldwide for 
implanted medical devices, such as cardiac pacemakers and defibrillators. Licens-
ing is not required, but MICS equipment must only be operated by an authorised 
health care professional [21]. Maximum radiated power in the frequency band from 
402-405MHz is 25µW, with 25kHz channel spacing. Therefore, the coverage of 
MICS is only about 1-2 meters. 

The WMTS is available in the US, operating at 608-614MHz, 1,395-1,400MHz 
and 1,427-1,432MHz. As the name implies, it is used for ambulatory monitoring of 
a patient's health and gives greater mobility than wired solutions. WMTS permits 
bi-directional data communications related to medical care, with the exception of 
voice and video [22]. With respect to BSNs, WMTS has major limitations: it is not 

Start of 
Band [MHz] 

Bandwidth 
[kHz] 

Channel 
Spacing 

[kHz] 
Max. ERP 

[mW] 
Max. Duty 

Cycle Application 

863.000 2000 (200, 50) 10 - Microphones,
audio

865.000 3000 200 100
(500, 2,000) - RFID 

868.000 600 - 25 1% Non-specific 
868.600 100 25 10 0.1% Alarms 
868.700 500 - 25 0.1% Non-specific 
869.200 50 25 10 0.1% Social alarms 
869.250 50 25 10 0.1% Alarms 
869.300 100 25 10 - Non-specific 
869.400 250 25 500 10% Non-specific 
869.650 50 25 25 10% Non-specific 
869.700 300 - 5 - Non-specific 
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available worldwide, home use is prevented, and registration procedures and a hu-
man coordinator are required. 

Ultra-Wideband (UWB) systems operate at very low radiated power density 
levels by employing very narrow pulses resulting in very large bandwidths. Origi-
nally developed for military purposes, these systems now are poised to enter the 
consumer market. In 2002, the FCC opened a large band from 3.1 to 10.6GHz with 
different power levels for UWB. The acceptance of UWB in Europe is still being 
debated. In March of 2004, the European Commission issued a mandate to CEPT to 
establish a task group on UWB usage. The resulting maximum generic UWB power 
limits given in ECC Report 64 were too stringent to facilitate UWB operation 
throughout Europe. A second mandate was issued in June 2005 to study particular 
coexistence scenarios and interference mitigation techniques like Detect And Avoid
(DAA), as mandated in the current draft ECC Decision for the 3.1 – 4.95GHz range 
(-70dBm/MHz maximum mean EIRP density). 

5.3.3 Wireless Communication Standards 

Among the many wireless communication standard activities worldwide, the IEEE 
802.11 and IEEE 802.15 family of standards have the largest impact on wireless to-
day. IEEE 802.11 defines different wireless LAN technologies, such as the promi-
nent 2.4GHz, 11Mbit/s IEEE 802.11b, 2.4GHz, 54Mbit/s IEEE 802.11g, and 5GHz, 
54Mbit/s IEEE 802.11a. In general, the term WLAN refers to systems with a cover-
age of 10 to 100 meters that have hundreds of milliwatts at their disposal and often 
interact with a wired infrastructure (LANs), whereas the term WPAN refers to sys-
tems with a coverage of less than 10 meters for highly mobile devices, such as 
wireless I/O peripherals with very limited power resources. 

IEEE 802.15 is the standardisation body that issued three major WPAN tech-
nologies so far: IEEE 802.15.1 medium-rate WPAN (derived from the Bluetooth® 
standard) with up to 720kbit/s peak rate, IEEE P802.15.3 high-rate WPAN support-
ing hundreds of Mbit/s for multimedia usage, and IEEE 802.15.4 low-rate WPAN, 
mainly aiming at sensor/actuator networks. Derivatives and expansions of these 
three are currently under discussion. Finally, IEEE 802.15.2 describes a recom-
mended practice for the coexistence of WPAN and WLAN devices. 

As no single technology can suit all needs, it is mainly the IEEE 802.15 WPAN 
family that best fits the requirements of BSNs, in terms of low power consumption, 
low complexity, and small form factor.  

5.3.4 IEEE 802.15.1: Medium-Rate Wireless Personal Area Networks 

Originally developed by the Bluetooth SIG, this medium-rate standard soon became 
a synonym for short-range wireless communications worldwide. However, it should 
be pointed out that Bluetooth is mainly meant as a cable replacement with special 
enhancements for voice data, and not really dedicated to flexible networking sce-
narios. 
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After the Bluetooth V1.1 specifications were finalised, the IEEE adopted and 
converted them into an IEEE Standard, which was officially released in June 2002 
[23]. This process not only included the conversion of the specification to IEEE 
format, but it also encompassed the addition of an IEEE 802 Logical Link Control 
interface – in order to make Bluetooth a real member of the IEEE 802 family of 
communication standards – and the addition of SDL (Specification and Description 
Language) material. 

Bluetooth supports up to seven simultaneous wireless links at a peak data rate of 
720kbit/s over a maximum distance of 10m. Link layer security is supported. Typi-
cal transceiver modules measure approximately 25mm×15mm×2mm and consume 
in the order of 100 to 200mW.  

Audio 
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Control 

Baseband

Radio 

IEEE Logical Link Control 

IEEE MAC 

IEEE PHY 

LLC RFCOMM TCS SDP…

Application, Profiles 

HCI 

L2CAP 

Figure 5.5 IEEE 802.15.1 Bluetooth protocol stack. 

The IEEE 802.15.1 Bluetooth Protocol Stack [23] is shown in Figure 5.5. Blue-
tooth Radio, Baseband, Link Manager Protocol (LMP), Host Controller Interface
(HCI), Logical Link Control and Adaptation Protocol (L2CAP), RFCOMM and 
Service Discovery Protocol (SDP) are defined by the specification. Bluetooth Radio 
deals with channel frequencies and transceiver characteristics. The Baseband han-
dles packet formats and provides a physical link – Asynchronous ConnectionLess 
(ACL) link or Synchronous Connection-Oriented (SCO) link – between Bluetooth 
units. LMP is responsible for link set-up, link control and security aspects. L2CAP 
provides data services to the upper protocols. It has multiplexing, segmentation and 
reassembly capabilities and is exclusively supported by the ACL links. RFCOMM 
is a serial line emulation protocol. Finally, a Service Discovery Protocol is also in-
cluded in the stack. 
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Bluetooth operates in the 2.45GHz ISM frequency band. This band is split into 
79 (USA, Europe) or 23 (Japan) RF channels of 1MHz each, in which a Gaussian
Frequency Shift Keying (GFSK) modulation scheme is used, very much like in the 
GSM system. This allows a maximum raw bit rate of 1Mbit/s per RF channel. Blue-
tooth devices can be classified into three different power classes: Class 1 with a 
maximum transmitted power of 20dBm; Class 2 with a maximum transmitted 
power of 4dBm (nominal 0dBm); Class 3 with a maximum output power of 0dBm. 
This yields a typical radio range of ten meters at 0dBm, and 100 meters at 20dBm. 
Relevant regulatory rules are set forth in FCC 15.247 (US) and ETSI 300.328 (EU). 

IEEE 802.15.1 utilises a spectrum-spreading technique called Frequency Hop-
ping (FH). Although a Bluetooth radio transmits in the whole 2.45GHz ISM band, 
at a certain instant only one of the available 1-MHz RF channels is used. When a 
frequency hop occurs, the centre transmission frequency switches to that of another 
channel.

Bluetooth uses a Frequency-Hopping/Time-Division-Duplex (FH/TDD) scheme. 
The physical Bluetooth channel is defined by a pseudo-random frequency-hopping 
sequence, chosen out of the 79 (23) possible frequencies. Frequency hops occur 
every 625 microseconds. This makes a nominal rate of 1,600hops/s. The channel is 
also time-slotted with the same periodicity and the slots are dedicated either to 
transmit or to receive (TDD scheme). This division in time also allows for multi-
plexing of different devices when they share the same Bluetooth channel. It should 
be noted that the newer Bluetooth V1.2 specification adds Adaptive FH, which is 
able to skip certain frequencies in order to minimise interference. 

Despite all the valuable features of Bluetooth, when looking at it from a BSN 
point of view, a number of severe limitations become obvious. Automatic network 
formation is not supported, and when the master of an established network moves 
away, the entire network collapses, which conflicts with the requirements of dy-
namically changing networks. Starting up a connection is rather slow, i.e. up to the 
order of five seconds. Once a Bluetooth Inquiry (see Figure 5.6) is initiated to look 
for other Bluetooth devices, it disrupts every on-going communication, such as 
transmission of an ECG data stream. In addition, a Bluetooth Inquiry will fail if 
both devices are simultaneously in Inquiry State. Moreover, only single piconets are 
supported by the Bluetooth PAN profile. The interconnection of several piconets 
(such as scatternet) is defined but so far not fully specified. Scatternets are therefore 
proprietary solutions that are rarely used in practice. Finally, efficient multicast or 
broadcast provisions are missing. 

In conclusion, it is evident that Bluetooth offers a vast variety of available and 
affordable turnkey radio modules. However, Bluetooth is likely to waste too much 
power and time due to lengthy FH synchronisation procedures. Therefore, weeks of 
battery life seem unfeasible. In addition, lengthy inquiry procedures interrupt cur-
rent data transfers. The new Bluetooth V1.2 mitigates some of the above problems, 
but to a limited degree only. 
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Figure 5.6 Bluetooth connection setup. 

5.3.5 IEEE P802.15.3: High-Rate Wireless Personal Area Networks 

The intention behind the creation of IEEE P802.15.3 was to enable quick multi-
megabyte data transfers within the scope of a WPAN, e.g. the transmission of high-
quality multimedia files, and even high-definition video transmission (around 
20Mbit/s) by means of a low-power and low-cost wireless system. Therefore, new 
MAC and PHY specifications aiming at high data rates for fixed, portable and mov-
ing devices within a personal operating space were created, see [24]. Coexistence 
with other IEEE 802.15 and IEEE 802.11 devices should also be achieved. 

The resulting IEEE P802.15.3 MAC and PHY features [25] are: data rates of 11, 
22, 33, 44, and 55Mbit/s over a 2.4GHz ISM radio link, a MAC protocol that sup-
ports asynchronous and Quality-of-Service (QoS) isochronous data transfers and 
that is partially based on HiperLAN/2, a security suite and ad-hoc peer-to-peer net-
working, where wireless devices dynamically become master (Piconet Controller) 
or slave (Device) according to the existing network structure. Up to 256 active de-
vices can be configured in a piconet (see Figure 5.7) or scatternet configuration. 
The target network join time is less than one second. Dynamic Channel Selection
(DCS) helps to ensure low interference levels.  

The original physical layer aims at an RF front-end and baseband processors op-
timised for short-range transmission exhibiting a current drain of less than 100mA 
(much less than IEEE 802.11) and a small form factor for integration into consumer 
devices. On top of that, a number of provisions for intelligent power management 
during idle or scan times is provided through the MAC. As depicted in Figure 5.8, 
secure and non-secure data frames are supported by the IEEE P802.15.3 MAC 
layer.
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Figure 5.8 Non-secure and secure data frame of IEEE P802.15.3 MAC header. 

The current IEEE P802.15.3 PHY layer operates in the 2.4GHz band, occupying 
15MHz of RF bandwidth per channel. Hence, three or four non-overlapping chan-
nels can be accommodated within the available 83MHz of the 2.4GHz band. Rele-
vant regulatory rules are set forth in FCC 15.249 (US) and ETSI 300.328 (EU).  

In contrast to IEEE 802.11 and IEEE 802.15.1, this high-rate WPAN choses a 
single-carrier PHY in an effort to reduce complexity and power drain. Rather than 
employing spread-spectrum techniques, the original IEEE P802.15.3 PHY har-
nesses Trellis-Coded Modulation (TCM) with multi-bit symbols at 11MBaud and 
achieves 11 to 55Mbit/s peak data rate over a range of 10 to 30 meters. 

It soon became apparent that these 55Mbit/s were not sufficient to fulfil the ever 
increasing demands in terms of data rate. After the huge success of IEEE 802.11 
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WLAN, which by itself became capable of maintaining 54Mbit/s peak data rate 
(IEEE 802.11a and g), and wired connections like USB 2.0 and IEEE 1394 the 
market was in quest of a new PHY layer for the existing IEEE P802.15.3 MAC. 
Data rates from 100 to 500Mbit/s and even more became desirable, for instance to 
convey multiple video streams at the same time, over a distance of up to ten meters, 
making IEEE P802.15.3 an ideal USB 2.0 or IEEE 1394 cable replacement.  

This led to the inception of the IEEE P802.15.3a Alternate PHY layer [26]. 
UWB became a promising radio technology at the time when IEEE P802.15.3a was 
started, particularly owing to the fact that the FCC opened a 3-10GHz ‘band’ in the 
US for use by low-power UWB transceivers. In addition to the more traditional 
pulse-based UWB approaches, Multiband-OFDM as proposed by the MultiBand-
OFDM Alliance (MBOA) appeared as an alternative solution. Currently, IEEE 
P802.15.3a has not yet decided between both UWB flavours, and therefore lags be-
hind its expectations. 

In summary, IEEE P802.15.3 has been released as a standard for low-power 
high-rate WPANs featuring a thorough MAC with reservation schemes, powerful 
sleep modes and even inter-piconet communication support. However, the existing 
2.4GHz PHY is quite unlikely to hit the market because of its comparatively low 
maximum data rate. The alternative PHY layer IEEE P802.15.3a is not yet released, 
and it is unclear when the situation will change. Moreover, acceptable same-type 
and different-type coexistence of UWB systems has yet to be proven. 

For BSNs, IEEE P802.15.3(a) might in many cases be oversized despite its scal-
able data rates. While the energy-per-bit figures of IEEE P802.15.3a are at first im-
pressive, the overhead for very small BSN packets might put the overall efficiency 
in question. It can, however, be very useful when ambient-related information has 
to be transmitted, e.g. originating from a video camera, or if data is transmitted in 
larger, thus more efficient, bursts. 

5.3.6 IEEE 802.15.4: Low-Rate Wireless Personal Area Networks 

According to the ZigBee Alliance that builds on top of the IEEE 802.15.4 MAC 
and PHY standard [27], low-rate WPAN applications address a multi-billion unit 
market in 2007. Among these are wireless residential, automotive, consumer, and 
healthcare systems providing a new experience in terms of ease of installation and 
very large sensor networks. To make this a reality, the underlying technology is re-
quired to operate in a license-free band with unrestricted geographic use that has 
comparatively good RF penetration properties. The IEEE 802.15.4 Working Group 
defined two physical layers plus a low-complexity MAC layer. The standard was 
officially released in 2003. 

The IEEE 802.15.4 PHY uses Direct Sequence Spread Spectrum (DSSS) to 
fight against the potentially high interference levels in the unlicensed frequency 
bands used. Two physical layers are defined depending on the frequency band: the 
868/915MHz PHY and the 2,450MHz PHY. The following table depicts their char-
acteristics as to maximum data rate and geographical coverage. 
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Table 5.4 IEEE 802.15.4 frequency bands, data rates, and modulation methods.

The centre frequencies of the respective channels k can be calculated from the 
following equations: 

k = 0:   fc = 863.3 MHz 
k = 1, …, 10:  fc = 906 + 2(k-1) MHz 
k = 11, …, 26:  fc = 2405 + 5(k-11) MHz 

The data rates indicated in Table 5.4 look sufficient for BSNs, which have rela-
tively low bandwidth requirements. Nevertheless, the 20kbit/s and 40kbit/s possible 
on the 868MHz and 915MHz bands do not enable the more demanding use cases. 

As mentioned earlier, the European 868MHz band [20] has currently a duty cy-
cle limitation of 1%, which yields an effective data rate of only 200bit/s. The Euro-
pean radio authorities are planning to extend that band and relax the duty cycle 
limitations. One of the goals of the standardisation group IEEE 802.15.4b is to en-
hance the current IEEE 802.15.4 868/915MHz PHY with a higher data rate in the 
future. The current IEEE 802.15.4b draft [28] introduces two new PHY that enable 
100 to 250kbit/s for the 868MHz band and 250kbit/s for the 915MHz band. How-
ever, due to the current draft status of IEEE 802.15.4b and eventual changes in ra-
dio regulations, the future evolution of the IEEE 802.15.4 868/915MHz band with 
respect to the achievable data rate still remains uncertain. 

Due to the data rate requirements of BSNs, and also to the worldwide availabil-
ity, the 2,450MHz PHY seems appropriate to enable the envisaged applications. 
Two drawbacks of the utilization of the 2.4GHz ISM frequency band are the con-
siderable body attenuation and the potentially high interference level. These are dis-
cussed later in this chapter. 

To allow for very low-cost low-complexity devices, IEEE 802.15.4 defines Re-
duced Function Device (RFD) and Full Function Device (FFD). RFDs implement a 
subset of the IEEE 802.15.4-defined primitives and cannot act as coordinator. FFDs 
have a full implementation of IEEE 802.15.4 and can adopt any role in the WPAN. 
An IEEE 802.15.4 radio is capable of performing three different signal power 
measurements: 

Frequency 
Bands

Coverage Channels Data Rate Data
Modulation 

Chip
Modulation 

2.4 GHz Worldwide 16 250kbit/s 16-ary  
orthogonal

OQPSK,  
2Mchips/s 

868 MHz Europe 1 20kbit/s BPSK BPSK,  
300kchips/s

915 MHz Americas 10 40kbit/s BPSK BPSK,  
600kchips/s
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• Link Quality Indication (LQI): Characterises the strength and/or quality 
of a received packet. This is useful for the network and application lay-
ers (mainly for routing and channel selection). 

• Energy Detection (ED): Characterises the energy level in the current 
channel, which can be originated by many radiation sources (IEEE 
802.15.4 interferer, interferer using another radio technology, back-
ground noise, etc.). The network layer uses ED as part of the channel 
selection mechanism. 

• Clear Channel Assessment (CCA): Depending on the mode used, CCA 
assesses if the channel is either free of IEEE 802.15.4-originated 
transmission (based on IEEE 802.15.4 signal pattern recognition) or 
free of any interference (based on ED). This functionality is required 
by the MAC layer for implementing CSMA/CA (Carrier Sense Multi-
ple Access/Collision Avoidance).

Although common IEEE 802.15.4 devices are expected to operate with transmit 
powers between –3dBm (0.5mW) and 10dBm (10mW), 0dBm (1mW) of transmit 
power is the most typical value. A typical transceiver consumes approximately 
60mW when transmitting or receiving. This power consumption is considerably 
lower than that of a typical Bluetooth transceiver, which consumes around 150mW. 
IEEE 802.11b transceivers are far more power-hungry, with typical power con-
sumptions between 400mW and 1,500mW. 

The IEEE 802.15.4 MAC layer is a simple protocol designed to cater for low-
cost, low-power devices but yet flexible enough to enable the delivery of periodic 
data, intermittent data (such as occasional measurements) and repetitive low-latency 
data (for instance, real-time ECG streaming). It features a fully handshaked proto-
col for reliable delivery of data and is able to support extremely low duty cycle 
(even below 0.1%) operations efficiently. 

IEEE 802.15.4 uses four types of MAC frames: beacon frame, data frame, ac-
knowledgement frame, and MAC command frame. The MAC layer optionally sup-
ports a superframe structure, the format of which is defined by the coordinator. The 
superframe is bounded by network beacons, sent periodically by the coordinator of 
a beacon-enabled network, and is divided into sixteen equally sized slots. The bea-
cons are used to synchronise the attached devices, to identify the WPAN and to de-
scribe the structure of the superframes. The superframe can have an active and an 
inactive portion, during which the coordinator does not interact with its WPAN and 
may enter a low power (sleep) mode. 

For low-latency applications and/or applications requiring fixed data rates, for 
instance ECG monitoring, the coordinator may dedicate portions of the active su-
perframe to that application. These portions are called Guaranteed Time Slots
(GTS) and are allocated in the Contention-Free Period (CFP), see Figure 5.9. In the 
rest of the active superframe, known as Contention Access Period (CAP), devices 
use slotted CSMA/CA to access the channel. In non-beacon enabled networks, in 
which there is no superframe structure or GTS, the channel access mechanism used 
is always unslotted CSMA/CA. 
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Figure 5.9 Example of the IEEE 802.15.4 superframe structure. 

All devices operating in the WPAN shall have unique 64-bit extended ad-
dresses, which can be used for communication within the WPAN. Communication 
with 16-bit addresses is also possible if the coordinator allocates short addresses for 
its devices during association to the WPAN. Due to this addressing mechanism, 
IEEE 802.15.4 offers support for over 65,000 devices in a PAN, in contrast to Blue-
tooth, which supports only up to eight active devices in a network. The number of 
WPAN members supported by IEEE 802.15.4 is more than sufficient for any envis-
aged BSN applications. 
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Figure 5.10 General IEEE 802.15.4 MAC and PHY frame formats. 

The general MAC frame format is depicted in Figure 5.10 together with the 
PHY frame format. The maximum payload deliverable by a MAC frame containing 
data is 102 or 118 bytes, depending on the addressing scheme used and the network 
topology. In principle, that payload could be directly employed for encapsulating 
medical data, in case of renouncement to the higher protocol stack layers. 

ZigBee, which sits on top of the IEEE 802.15.4 MAC Layer in the protocol 
stack, must be provided with services that expose the PHY and MAC functionality 
of IEEE 802.15.4. The interfaces of these services are the MAC sub-Layer Man-
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agement Entity Service Access Point (MLME-SAP) between ZigBee and MAC 
layer, and the MAC Common Part Sub-layer data Service Access Point (MCPS-
SAP). The services offered include data transport, association to a PAN, beacon no-
tification, GTS management, orphan notification, receiver management, scanning 
for PANs, superframe configuration, synchronisation with the coordinator, and 
more. 

IEEE 802.15.4a [29] is a new Task Group that is going to propose an alternative 
PHY layer for the low-rate WPAN standard. In March 2005, the baseline specifica-
tions for two different PHY technologies emerged, (a) UWB Impulse Radio, and 
(b) Chirp Spread Spectrum (CSS) in the 2.4GHz ISM band. This alternative PHY 
baseline will not only provide high aggregate throughput at very low power (aiming 
at 1mW power consumption), but also better scalability of data rates versus range 
and even high-precision ranging with sub-meter precision (UWB option only).  

Although a wireless BSN is not always a lowest duty cycle application (such as 
continuous ECG streaming), the ZigBee/IEEE 802.15.4 framework appears to be 
the most intriguing and suitable protocol suite for it. The IEEE 802.15.4 MAC of-
fers a number of valuable ingredients for BSNs: the MAC is optimised for low 
power and short messages and includes peer-to-peer network support, guaranteed 
time slots, etc. IEEE 802.15.4 is also likely to be chosen as the radio basis for IEEE 
P1451.5-based wireless sensors [40]. Highly integrated single-chip IEEE 802.15.4-
compliant transceivers are already available from a number of IC manufacturers, 
yet they are a bit more power hungry than simple FSK transceivers because of 
DSSS, but they offer better robustness and better interoperability compared with 
FSK. Of course, the data rate is not sufficient to carry video data in ambient appli-
cations, but it could well convey pre-processed data, e.g. from a camera system that 
detects when a person is moving or falling. The IEEE 802.15.4a alternate PHY may 
add another interesting flavour to BSNs in the not-too-distant future. Worldwide in-
terest in ZigBee-/IEEE 802.15.4-compliant products will inspire global creativity 
and keep costs down. 

5.3.7 ZigBee 

The ZigBee wireless technology [30] was developed by the ZigBee Alliance with 
the ambition of enabling reliable, cost-effective, low power and wirelessly net-
worked monitoring and control products based on an open global standard. The tar-
geted products and applications are medical monitoring, home, industrial and build-
ing automation/control, PC peripherals, consumer electronics and toys. ZigBee’s 
primary drivers are simplicity, long battery life, advanced networking capabilities, 
reliability and low cost. These drivers are shared with IEEE 802.15.4, which is in-
tegral part of the ZigBee standard. 

ZigBee applications communicate using the PHY and MAC layers specified by 
the IEEE 802.15.4 standard. As shown in Figure 5.11, ZigBee builds a Network 
(NWK) layer and an Application (APL) layer on the IEEE 802.15.4-defined layers. 
The PHY layer provides the basic communication capabilities of the physical radio. 
The medium access control layer provides services to enable reliable single-hop 
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communication links between devices. The network layer provides routing and 
multi-hop functions needed for creating different network topologies. The applica-
tion layer includes an Application Support (APS) sub-layer, the ZigBee Device Ob-
ject (ZDO), and the ZigBee applications defined by the user or designer. Whereas 
the ZDO is responsible for overall device management, the APS provides servicing 
to both ZDO and ZigBee applications. 

ZigBee Networking (NWK) LayerZigBee Networking (NWK) Layer

ZigBee Application Support Sublayer(APS)ZigBee Application Support Sublayer (APS)

ZigBee Application FrameworkZigBee Application Framework

ZigBee Device Object (ZDO)ZigBee Device Object (ZDO)

Security
Service
Provider

Security
Service
Provider
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Object 240
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Object 240 Application

Object 1
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NWK Security
Management

NWK Security
Management NWK Message
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APS Security
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Figure 5.11 ZigBee communication protocol stack. 

The ZigBee NWK layer supports star, mesh, and cluster tree topologies. Its re-
sponsibilities include mechanisms used to join and leave the network, to apply se-
curity to frames and to route frames to their intended destinations. In addition the 
network layer is responsible for the discovery and maintenance of routes between 
devices as well as for the discovery of one-hop neighbours. ZigBee defines three 
device types with respect to their networking capabilities: 

• ZigBee coordinator: The IEEE 802.15.4 PAN coordinator. 
• ZigBee router: An IEEE 802.15.4 Full Function Device (FFD) that par-

ticipates in a ZigBee network and is not the ZigBee coordinator but 
may act as a coordinator within its personal operating space. A ZigBee 
router is capable of routing messages between devices and supporting 
device associations. 

• ZigBee end device: An IEEE 802.15.4 Reduced (RFD) or FFD that par-
ticipates in a ZigBee network and is neither the ZigBee coordinator nor 
a ZigBee router. 
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The network layer of the ZigBee coordinator is responsible for starting a net-
work and assigning network addresses to newly associated devices. The underlying 
medium access layer adopts the ZigBee network address as IEEE 802.15.4 16-bit 
short address. Network addresses are assigned using a distributed addressing 
scheme designed to provide every potential parent device (coordinator) with a finite 
sub-block of network addresses. Addresses are unique to a particular network and 
are given by a parent to its children (associated devices). 

The ZigBee routing algorithm is designed to enable reliable, cost effective, low-
power, wirelessly networked monitoring and control products. ZigBee routers must 
be able to perform hierarchical routing and may, optionally, perform table-driven 
routing. In hierarchical routing, frames are routed along the hierarchy that is put in 
place at network formation time and is reflected in the network addresses of source 
and destination. This routing mechanism is the only possible when the network op-
erates as star or tree network. In table-driven routing, frames are routed according 
to a routing table, which is set-up and maintained using a request-response route 
discovery protocol. Table-driven routing overcomes the sub-optimal route problem 
that occasionally arises with hierarchical routing, yet it is more costly. Devices that 
have enough memory and processing power to build and maintain routing tables 
may use table-driven routing. 

Neither the ZigBee network layer nor any other ZigBee-defined layer offer a re-
source reservation functionality though their interfaces. The Guaranteed Time Slot
(GTS) feature offered by IEEE 802.15.4 remains inaccessible for ZigBee applica-
tions. 

The ZigBee APL layer consists of the APS sub-layer, the ZDO – containing the 
ZDO management plane – and the manufacturer-defined application objects, which 
are embedded in the Application Framework (AF). The responsibilities of the APS 
sub-layer include maintaining tables for binding – the logical connection of devices 
based on their services and needs – and forwarding messages between bound de-
vices. The responsibilities of the ZDO include defining the role of the device within 
the network (for instance the ZigBee coordinator or end device), managing the node 
configuration, initiating and/or responding to binding requests and establishing a 
secure relationship between network devices. Another responsibility of the ZDO is 
discovery, which is the ability to determine which other devices are operating in the 
network. The developer-defined application objects implement the actual applica-
tions according to application descriptions specified by ZigBee. 

The APS sub-layer enables three addressing modes: direct addressing (normal 
unicast delivery), indirect addressing and broadcast addressing. Applications that 
use direct addressing must specify the destination ZigBee address (16- or 64-bit) 
and the destination endpoint of the APS data unit. On the other hand, applications 
that use indirect addressing do not have to specify the destination of the APS data 
unit. The APS can extract the required destination information from the binding ta-
ble, which is located and managed by the APS of the ZigBee coordinator. 

The AF is the environment in which application objects are hosted. An applica-
tion object sends and receives data over its assigned endpoint, a physical/logical de-
scription that enables a single ZigBee device to support up to 240 independent end 
applications. Endpoints provide ZigBee with a level of sub-addressing additional to 
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network addressing. Applications can be deployed on endpoints 1 to 240. It is a task 
of the application developer to decide how to deploy applications on endpoints. 
However, it is required that simple descriptors are created for each used endpoint 
and that those descriptors are made available for service discovery. Endpoint 0 is 
used by the ZDO for management purposes. Endpoint 255 is used to address all ac-
tive endpoints (the broadcast endpoint). Endpoints 241 to 254 are reserved. 

ZigBee profiles are an agreement on messages, message formats and processing 
actions that enable applications residing on separate ZigBee devices to send com-
mands, request data and process commands/requests to create an interoperable, dis-
tributed application. A profile defines the following: 

• One or more device description(s): A device descriptor is a description 
of a specific device within an application segment. For instance, the 
“Switch Remote Control” and the “Light Sensor Monochromatic” are 
two device descriptions included in the ZigBee application profile 
“Home Control, Lighting”. Each device description is assigned a unique 
identifier within its profile that is exchanged during the service discov-
ery process carried out by the ZDO. 

• Cluster(s): A cluster is a container for one or more attributes, which are, 
in turn, data entities that represent a physical quantity or state. Each 
cluster is assigned an 8-bit cluster identifier unique within its specific 
profile. Equally, each of the attributes contained in a cluster is assigned 
an attribute identifier. An example of a cluster defined within the 
“Home Control, Lighting” profile is the “Program Light Sensor Mono-
chromatic” cluster, which contains attributes such as “ReportTime” or 
“MinLevelChange”. 

• Service types: Type of AF data service to be used. It can be either a Key
Value Pair (KVP) or Generic Message (MSG) service. 

The ZigBee device profile is a special profile that describes how the ZDO im-
plements its functionality and defines, unlike the rest of ZigBee profiles, capabili-
ties supported by all ZigBee devices. The key to interoperability between ZigBee 
devices of different vendors is the agreement on a profile. Profile identifiers are 
unique and assigned by the ZigBee Alliance. ZigBee profiles are administratively 
classified in three classes: private, published and public. A medical profile for in-
teroperability between body sensors has not been defined as of today. 

The ZigBee security services include methods for key establishment, key trans-
port, frame protection and device management. Security is provided at MAC, NWK 
and APL layers following an open trust model according to which all stack layers 
and all applications running on a single ZigBee device trust each other. Hence the 
provided security services cryptographically protect only the interfaces between dif-
ferent devices, and not the interfaces between stack layers. The APS provides ser-
vices for the establishment and maintenance of security relationships. The ZDO 
manages the security policies and security configuration of a device. 
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Security within a ZigBee network is based on ‘link’ keys and a “network” key. 
Unicast communication between APL peer entities is secured by means of a 128-bit 
link key shared by two devices, while broadcast communications are secured by 
means of a 128-bit network key shared amongst all devices in the network. Ulti-
mately, security between devices depends on the secure initialisation and installa-
tion of these keys. For this purpose, ZigBee defines the role of trust centre; the de-
vice trusted by devices within a network to distribute keys for the purpose of 
network and end-to-end application configuration management. 

ZigBee defines eight security levels to protect incoming and outgoing frames. 
Those security levels are applicable to all stack layers involved in security and are 
based on CCM*, a generic combined encryption and authentication block cipher 
mode that has been derived from CCM [31] and specified in the IEEE 802.15.4 and 
ZigBee specifications. CCM* allows the reuse of the same key by the MAC, NWK 
and APL layers of the ZigBee stack. Furthermore, to simplify interoperability, the 
security level used by all devices in a given network and by all layers of a device 
shall be the same.  

The use of security is determined by the network designer under consideration 
of the security requirements of the application to be enabled. The designer should 
trade off between security level and effective data rate. It is vitally important to 
provide medical-purpose BSNs with data integrity to ensure that nobody modifies 
or fakes the output data of BSN sensors. Many applications also require data confi-
dentiality. 

5.3.8 Comparison of Technologies 

For personal healthcare it is desirable to exploit proven and cheap off-the-shelf ra-
dio technology for wireless body sensor networks. Table 5.5 provides an overview 
of candidate wireless standards that come into consideration. From this, it is obvi-
ous that IEEE 802.11b WLAN technology is power hungry to such an extent that 
users would need to replace the batteries after only a few hours of operation. In this 
respect the wireless personal area standards IEEE 802.15.1 (Bluetooth) and IEEE 
802.15.4 are much better suited for battery-powered body sensor networks.  

However, IEEE 802.15.4 scores over IEEE 802.15.1 due to its faster, more 
flexible and scalable networking features, while it consumes less energy, processing 
and memory resources. It also supports standard-based security. In addition, IEEE 
802.15.4 lays the foundation for ZigBee adding multi-hop networking and an appli-
cation support layer. ZigBee’s multi-hop routing capability enables wireless con-
nectivity of ambient sensors scattered all over the user’s home. Defining a medical 
ZigBee profile could be a promising approach for ensuring interoperability between 
body-worn wireless medical sensors from different vendors. Therefore, as of today, 
IEEE 802.15.4 is the standard wireless technology of choice for BSNs. 



5. Network Topologies, Communication Protocols, and Standards  169

5.4 Practical Experiences with IEEE 802.15.4 

Recently, we have developed a versatile IEEE 802.15.4-based ZigBee-ready wire-
less sensor node platform for continuous patient monitoring. The platform has been 
named AquisGrain, in a reference to the words ‘Grain’, which indicates the small 
size of the sensor nodes, and ‘Aquisgranum’, the Latin name of the German city of 
Aachen, where the platform was developed. The current version of AquisGrain sen-
sor nodes has a board size of 35×36 mm2 and consists of two main components: 

• Atmel Atmega128L 8-bit microcontroller 
• Chipcon CC2420 IEEE 802.15.4 radio (2.4GHz ISM frequency 

band) 

Further components are: 

• Battery monitor/ID chip: Gauges the battery level and uniquely 
identifies the sensor  

• Step-up/step-down voltage regulator: Allows for flexibility in the 
type of battery used to power the node 

• 4-Mbit flash memory chip: Provides local data storage 
• System connector: Interfaces to the sensing hardware or to an even-

tual host system 
• λ/4 monopole antenna 

Figure 5.12 depicts the present family of AquisGrain wireless sensor nodes: as a 
standalone module, as a Compact Flash (CF) card, and as an USB stick. The next 
version of AquisGrain is currently in development. It will be based on the CC2430, 
which integrates IEEE 802.15.4 radio and 8-bit microcontroller in a single chip. We 
have used the AquisGrain sensor node platform to perform a practical evaluation of 
several aspects of IEEE 802.15.4-based BSNs: communication range and link ro-
bustness in different environments, power consumption, and coexistence with other 
wireless technologies.  

AquisGrain A1.0 features a typical power consumption of 93mW in active 
mode and 141µW in sleep mode. These values have been measured at a supply 
voltage of 3V and transmit power of 0dBm (1mW), which is the maximum transmit 
power for the radio. The minimum transmit power, -25dBm (3.17µW), leads to a 
power consumption of 66.3mW in transmit mode. The duty cycle, that is the per-
centage of time a node is active, has a dramatic impact on the operating lifetime of 
any sensor node. Let us suppose, as an example, a wireless sensor node with the 
power consumption of AquisGrain A1.0 at its maximum transmit power and fed 
with a small 3V lithium coin cell battery with a nominal capacity of 190mAh. Such 
configuration would allow for an operating lifetime between six hours (for a duty 
cycle of 100%) and 168 days (for a duty cycle of 0%). The vast majority of envis-
aged BSN sensors will need to communicate at a low average data rate: from a few
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bits/s (for non-streaming sensors with sporadic transmission of measurements or of 
control/configuration information) up to 10kbits/s (for the most demanding ECG-
like streaming sensors). Considering IEEE 802.15.4 sensor nodes operating in the 
2.4GHz ISM frequency band, those data rates translate respectively into a 4ppm 
(0.0004%) duty cycle for the first group of sensors and 4% duty cycle for the sec-
ond group. Thus, the operating lifetime expected for a typical 2.4GHz IEEE 
802.15.4 BSN node – configured as described above – ranges from 168 days (spo-
radic transmission) to 6.2 days (demanding streaming transmission). Although 
omitted in the previous considerations, the final operating lifetime of a wireless 
sensor node also depends on the power consumption of the sensing hardware inte-
grated with the node. Its contribution to the overall operating lifetime depends on 
the type of sensor used; it can be negligible, comparable or predominant over the 
contribution of the radio module. In the latter case, it is advisable to spend effort in 
the development and integration of lower-power sensing modules.  

The communication range and link robustness of any 2.4GHz wireless network 
are strongly dependent on its near environment (for example, the predominance of 
walls or furniture). For this reason we have performed extensive tests in several in-
door environments. Despite the high variance of the measurement results, it can be 
generalised that AquisGrain A1.0 has a communication range of ten to thirty meters 
and that, within that range, the link is robust in the first eight to ten meters. Addi-
tional tests outdoors have proven that indoor multi-path propagation helps to stabi-
lise the sudden link robustness changes that result from the relative movement 
amongst sensors. 

Figure 5.12 Family of AquisGrain wireless sensor nodes.

In Chapter 4, we discussed how the attenuation that the body causes on RF sig-
nals becomes higher with increasing radio frequency. Neirynck et al [32] measured 
the body attenuation on the 2.4GHz ISM band and observed shadowing depths of 
30dB to 40dB when the body was obstructing the line-of-sight. Analogue experi-
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ments on the 5.2GHz band showed that the attenuation was even 25dB to 30dB 
higher. The former RF attenuation values are indicative for the expected perform-
ance of wireless networks operating at 2.4GHz. Yet RF attenuation is not the only 
parameter that affects the performance of wireless networks; parameters like modu-
lation technique or spectrum characteristics must also be considered. The packet er-
ror rate (observed at application level) better characterises the performance of wire-
less networks. We have used AquisGrain to determine the packet error rate within 
an area of 5 meters around a transmitting sensor placed at different places of the 
body. The following list summarises the results. 

• The packet error rate is always far under 1% when the body influ-
ence is depreciative. 

• The packet error rate is always under 1% when the wireless sensor 
is attached to the ankle of a person lying in bed and covered with a 
blanket. 

• The packet error rate is always under 4% when the wireless sensor 
is attached to the left upper arm (blood pressure measurement spot) 
of a standing person that is periodically moving his trunk and arms. 

• The packet error rate is usually under 7% when the wireless sensor 
is attached to the chest of a standing person whose body is con-
tinuously blocking the line-of-sight between transmitter and re-
ceiver. Occasionally the packet error rate is considerably higher 
(up to 26%). 

The tests have shown that the influence of the body on IEEE 802.15.4-based 
BSNs is tolerable. Nevertheless the link becomes weak when the body totally 
blocks the direct communication path between nodes. Hence it is recommended to 
use the highest transmit power to minimise such effects. Antenna redundancy 
(when applicable) and the exploitation of different routes between sensors can fur-
ther improve the system performance. 

The 2.4GHz ISM band is an unlicensed frequency band and therefore prone to 
radio interference. In view of that, the IEEE 802.15.4 standard dedicates a section 
to coexistence with other IEEE standards and proposed standards [27, Annex E. 
The most relevant interference sources identified for IEEE 802.15.4 (2.4GHz) are: 

• IEEE 802.11b [33] (WLAN) 
• IEEE 802.15.1 [23] (medium-rate WPAN, Bluetooth) 
• IEEE P802.15.3 [25] (high-rate WPAN) 
• Microwave ovens 

The interference level amongst wireless communication systems mainly de-
pends on the transmitted power, channel bandwidth, spectrum spreading mecha-
nism and medium access scheme of each system. Whilst the transmit power of ex-
ternal interferers has an obvious impact on the level of interference induced in a 
system, the system’s own channel bandwidth and spectrum spreading contribute to 
the robustness against external interference. Medium access schemes that sense the 
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medium before transmitting (such as CSMA/CA) produce less interference than in-
flexible time-based medium access schemes like TDMA. Table 5.6 summarises 
these characteristics for IEEE 802.15.4 and its most relevant standards of interfer-
ence.

Table 5.6 Coexistence-relevant characteristics of wireless communication standards operat-
ing at 2.4GHz. 

The interference caused by IEEE 802.15.4 on the other systems is relatively low 
owing to its low transmit power, reduced channel bandwidth and CSMA/CA me-
dium access mechanism. Moreover the typically low duty cycle of IEEE 802.15.4 
devices further reduces the interference on other systems. IEEE 802.15.1 (Blue-
tooth) has a similar transmit power than IEEE 802.15.4 and uses frequency hop-
ping, which reduces 96% the probability of actual mutual interference. Despite 
Bluetooth’s TDMA medium access scheme, the former two facts cater for a rela-
tively grateful coexistence between IEEE 802.15.1 (Bluetooth) and IEEE 802.15.4.  

As for the interference of other systems on IEEE 802.15.4, IEEE 802.11b 
proves to be the most harmful due to its highest transmit power and spectrum 
bandwidth. The impact of IEEE P802.15.3 on IEEE 802.15.4 is not as big as that of 
IEEE 802.11b. Moreover, IEEE P802.15.3 is not an established standard yet. Due 
to the widespread utilisation of IEEE 802.11b and its high interference potential, 
IEEE 802.11b must be regarded as the most significant source of interference for 
IEEE 802.15.4-based BSNs. Simulations [27, 34] have shown that channel overlaps 
between IEEE 802.11b and IEEE 802.15.4 can be very detrimental to IEEE 
802.15.4 when the IEEE 802.11b interferer is close enough to the IEEE 802.15.4 
receiver.

Practical tests with AquisGrain A1.0 nodes and laptop computers equipped with 
standard PCMCIA WLAN cards (IEEE 802.11b) have shown that the interference 
caused by IEEE 802.11b on an IEEE 802.15.4 BSN is, expressed in packet error 
rate, much lower for non-overlapping channels (in Figure 5.13 IEEE 802.11b 
Channel 1 and IEEE 802.15.4 Channel 15) than for overlapping channels (in Figure 
5.13 IEEE 802.11b Channel 1 and IEEE 802.15.4 Channel 12). Even in case of 
channel overlap, the measured packet error rate drops noticeably as the offset be-

Standards 
Typical 

Transmit 
Power

Channel  
Bandwidth

Spectrum  
Spreading Medium Access

IEEE 802.15.4 0dBm 2MHz Direct sequence 
(DSSS) 

CSMA/CA
(TDMA optional) 

IEEE 802.11b 
(WLAN) 14-16dBm 22MHz Direct sequence 

(DSSS) 

CSMA/CA
(polling-based TDMA 

optional) 

IEEE 802.15.1  
(Bluetooth) 0dBm 1MHz Frequency Hopping 

(FHSS)(79 channels) TDMA 

IEEE P802.15.3 
Draft 17 8dBm 15MHz none CSMA/CA

(TDMA optional) 
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tween the central frequencies of IEEE 802.15.4 and IEEE 802.11b increases. Table 
5.7 depicts the main results of the IEEE 802.11b-induced interference experiments. 
In view of these results, it is recommended to start a BSN preferably on one of the 
four IEEE 802.15.4 channels that fall in the frequency gaps between IEEE 802.11b 
channels. This is only possible when the neighbouring IEEE 802.11b WLAN is de-
ployed following the non-overlapping channel scheme shown in Figure 5.13. Inde-
pendently of the scheme used to deploy the interfering technology, it is always rec-
ommended to perform an energy scan of all IEEE 802.15.4 channels before starting 
the BSN. Thus the BSN can be set up on the channel with the lowest level of inter-
ference. Another effective technique to minimise the effect of interferences is to use 
a dynamic channel selection in which the running BSN continuously scans the 
channel set to be capable of switching to a better channel whenever it is needed. 
The procedure used to select the BSN channel – either before starting the network 
or during operation – is not specified by the IEEE 802.15.4 standard or the ZigBee 
specification. It is entirely up to the BSN designer how to manage channels to cater 
for coexistence with other technologies. 

5.5 Healthcare System Integration 

Standards are the key for ensuring interoperability between wireless medical sen-
sors and for integration of body sensor networks into the healthcare enterprise. In 
general hospital information systems, standards for the exchange of clinical data 
and communication between medical devices, collaboration and negotiation proto-
cols are well established.  

5.5.1 Existing Interoperability Standards 

HL7 (Health Level Seven) [35] is a healthcare interoperability standard for the elec-
tronic interchange of clinical, financial and administrative information among inde-
pendent health care oriented computer systems; i.e., hospital information systems, 
clinical laboratory systems, enterprise systems and pharmacy systems. "Level 
Seven" refers to the highest level of the International Standards Organization's 
(ISO) communications model for Open Systems Interconnection (OSI) [1] – the ap-
plication level.  

IEEE P1073 [36, 37] standardises the physical (electrical, synchronisation, cable 
and connector) and transport (network services) characteristics of communication 
between medical devices for providing plug and play interoperability at the point of 
care. The IEEE P1073 family of standards – often referred to as Medical Informa-
tion Bus (MIB) – facilitates the efficient exchange of vital signs and medical device 
data, acquired by patient-connected medical devices, for all health environments. 
There is also a joint HL7/IEEE P1073 working group identifying and defining in-
terfaces to support interoperability between HL7- and IEEE P1073-based systems. 
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Figure 5.13 IEEE 802.11b (North America) and IEEE 802.15.4 (2.4GHz) 
channel scheme. 

Table 5.7 Relative Packet Error Rate (PER) measured at the IEEE 802.15.4 receiver depend-
ing on the offset between the central frequencies of IEEE 802.15.4 and IEEE 802.11b. The 
PER is normalised to the highest PER measured in every test set-up. 

The Technical Committee for Medical Informatics (TC251) of the European 
Committee for Standardisation (CEN) established a project team (CEN/TC251/ 
PT5-021) to standardise the representation of digitised biomedical signals, meas-
urements, events and alarms. The resulting VITAL (Vital Signs Information Repre-
sentation)/CEN ENV 13734 [38] standard specifies object-oriented models and a 
nomenclature and coding scheme for the information elements and services re-
quired to enable communication from and between medical devices. As illustrated 
in Figure 5.14 VITAL is directly complementary to IEEE P1073 by defining the 
higher layers protocols on top of the lower layers that are defined by IEEE P1073. 

12MHz Central  
Frequency Offset 

(no overlap) 

7MHz Central  
Frequency Offset 

(overlap) 

2mhz Central  
Frequency Offset 

(full overlap) 

No overlap vs. overlap 0.0036 1 n.a. 

Overlap vs. full overlap n.a. 0.098 1 
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5.5.2 Wireless Interoperability Standards Under Development 

The standardisation of communication processes that has led to the explosion of 
communications products in the consumer area has yet to take hold in the world of 
wireless sensors and body sensor networks. Although wireless communication 
standards such as the IEEE 802.15 family and ZigBee exist, they cover only the 
“lower” OSI layers (i.e. the physical, data link, network, and transport layers) which 
provide reliable data transport. But additionally, wireless medical devices must be 
able to understand the format and content of the messages they communicate to 
each other. Extending the standardisation to the “upper” OSI layers by defining ap-
plication profiles is required for ensuring that all wireless medical sensors speak the 
same language. There are only a few ongoing standardisation activities addressing 
this need and they are all still in their infancy. 

IEEE P1073 [36] formed a new RF wireless technologies working group (IEEE 
P1073.0.1.1) with very broad participation from both technology suppliers and us-
ers. This project is targeted at identifying issues related to using current off-the-
shelf technologies (for example IEEE 802.11 “WiFi”, IEEE 802.15.1/“Bluetooth”, 
and IEEE 802.15.4/“ZigBee”) in a shared IT infrastructure where multiple devices 
and systems from diverse vendors can be integrated to provide safe and effective 
communication of medical device data. The RF wireless technologies working 
group has been actively developing a technical report on the use of RF networks for 
medical device communications [39]. This report outlines specific exercises using 
detailed case scenarios to estimate the performance, as well as compare and con-
trast, known technologies operating on body, personal, local, and wide area net-
works. Considered in these exercises are network architecture and technology, 
EMI/EMC, quality of service management, co-existence and interface conformance 
disclosure, service discovery mechanism, security, interface cost, power consump-
tion, and technology configurability. Figure 5.16 provides an overview of the user 
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cases the RF working group is looking at, ranging from clinical, to home, to emer-
gency scenarios. 

In September 2005, the ZigBee Alliance [30] Application Framework Working 
Group issued a call for participation in a new profile task group to develop a new 
application profile in the area of health monitoring. A medical ZigBee profile will 
enable plug and play interoperability of wireless ZigBee-enabled medical sensors 
and devices.  

The IEEE P1451.5 [40] project is working on defining wireless communication 
protocols and data formats for wireless transducers (sensors and actuators) based on 
the IEEE P1451 family of smart transducer interface standards (see Figure 5.15). 
The standard will define a Transducer Electronic Data Sheets (TEDS), and proto-
cols to access TEDS and transducer data. It will adopt the IEEE 802 family as the 
basis of the wireless communication protocols. 

5.6 Conclusions 

Wireless sensor networks are a key technology for pervasive health monitoring. Vi-
tal signs such as ECG or SpO2 are measured by means of body-worn medical sen-
sors or in the future by unobtrusive health sensors that are integrated into the ambi-
ent environment. The medical data will be enriched with data from ambient sensors 
providing additional context information, for example location and activity. The 
mobile, star- or mesh-based, body sensor networks connect to the ambient multi-
hop mesh network resulting in a pervasive wireless hybrid network. Adding a mo-
bile phone or a home gateway to the system, provides global connectivity to distant 
sites such as hospitals or medical service centres.  

Currently there is a lack of application-layer interoperability standards for wire-
less BSNs and their integration into existing hospital systems. However, some stan-
dards development activities, such as the IEEE P1073 wireless technologies work-
ing group and the ZigBee medical profile task group, have been initiated to address 
this issue and they can be potentially used as a foundation for plug and play inter-
operability of wireless medical sensors.  

Concerning wireless connectivity technologies for short-range BSNs, the fre-
quency bands below 1GHz are preferable in terms of body attenuation and low-cost 
transceiver implementation. However, the available bands are either crowded, as is 
the case in the 433MHz spectrum range, specialised (such as MICS and WMTS), or 
not usable on a global basis (for instance, the North American 915MHz ISM band 
or the European 86xMHz bands). Currently, the worldwide 2.4GHz ISM band ap-
pears to be the most promising spectrum for wireless BSNs, although it already ac-
commodates a number of concurrent connectivity standards, such as IEEE 802.15.1 
Bluetooth, IEEE 802.11b/g Wireless LANs and IEEE 802.15.4 Wireless PANs – all 
of which employ spread-spectrum modulation technology for improved interference 
robustness. For clinical BSNs, IEEE 802.15.4 is recommended, as most medical 
BSNs do not require data rates in excess of 200kbit/s. IEEE 802.15.4 is also the ba-
sis of the ZigBee standard, which enables interoperability throughout all communi- 
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Figure 5.15 The IEEE P1451 family of smart transducer interfaces [40]. 

cation stack layers and manages even complex star-mesh hybrid network topolo-
gies. In comparison, IEEE 802.15.1 Bluetooth exhibits less flexible networking 
concepts, limited usability for uninterrupted real-time data transfers, and higher av-
erage power consumption for maintaining FH synchronisation. IEEE 802.11b/g     
WLAN, on the other hand, offers a good energy-per-bit ratio, but at a higher com-
plexity, larger form factor, and much higher instantaneous power drain that cannot 
be coped with in tiny body sensors. 

In the not-too-distant future, UWB-modulated systems such as IEEE 802.15.4a 
low-rate WPANs will provide sub-meter ranging capabilities or even hundreds of 
Mbit/s throughput (IEEE P802.15.3a), suitable for the transmission of ambient in-
formation collected by video cameras and microphones. However, UWB standards 
and UWB chip sets are still under development, and their usability for BSNs that 
require days of operation from small power sources and acceptable body attenua-
tion figures has to be proven first. 

We have used the wireless node platform AquisGrain to assess the feasibility of 
2.4GHz IEEE 802.15.4-based BSN. Whereas the effective communication range 
and link robustness are strongly affected by the presence of a human body between 
body sensor nodes, the performance of the BSN remains acceptable within a range 
of 5 meters around the patient. Additionally, appropriate channel management 
schemes can cater for a grateful coexistence between IEEE 802.15.4 and the rest of 
technologies that operate in the 2.4GHz ISM band.  In Appendices A and B of this 
book, a detailed architectural and programming guide of the BSN development kit 
will be provided. 
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6
 Energy Scavenging

Eric Yeatman and Paul Mitcheson 

6.1 Introduction 

As we have seen in previous chapters, the increasing miniaturisation and cost re-
duction of sensors, circuits and wireless communication components is creating 
new possibilities for networks of wireless sensors, in wearable and other applica-
tions. However, for sensors to be wireless, or untethered, requires not only wireless 
communication to and from the nodes, but also wireless powering. Batteries, of 
course, provide this capability in the great majority of portable electronic devices, 
and thus are the obvious solution also for wireless sensor node applications. How-
ever, their need for replacement or recharging introduces a cost and convenience 
penalty which is already undesirable in larger devices, and is likely to become un-
acceptable for sensor nodes as their ubiquity grows. As an alternative, sources 
which scavenge energy from the environment are therefore highly desirable. With 
the decreasing power demands for sensing, processing, and wireless communication 
for BSNs due to improved electronic design and miniaturisation, alternative power 
sources based on energy scavenging become increasingly realistic.  

Where batteries can power a sensor node for its whole expected lifetime without 
maintenance and without dominating the node cost and weight, the use of existing 
battery technology is likely to remain the favoured solution in most cases. However, 
even in such cases energy scavenging methods can have advantages to offer. The 
materials required in batteries are often toxic or environmentally unfriendly, adding 
to the burden of both biocompatibility for implanted use and end-of-life disposal. 
Where a lifetime beyond what a battery can provide is needed, clearly the “eternal” 
nature of the scavenging supply becomes particularly favourable.  

Energy scavenging for the supply of wireless electronics is a relatively young 
research field. In this chapter, we will review the current state-of-the-art and its fu-
ture trends after first discussing the likely energy requirements of BSN nodes and 
the capabilities of batteries. Detailed discussion of implementation will be focused 
on the general issues of inertial energy scavenging and our recent work in the field.  

It should be noted that this chapter is not intended to be a comprehensive sur-
vey; for such a purpose, the works of Starner and Paradiso [1], Roundy, Wright and 
Rabaey [2], and Mitcheson [3] are recommended.  
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6.1.1 Sensor Node Power Requirements  

BSN nodes will require power for three main functions: the sensor itself, any signal 
conditioning or data processing circuitry, and the wireless data link. For all of these 
functions, the power requirements depend strongly on the nature of the measure-
ment. For wearable applications, sensor nodes will usually be monitoring environ-
mental conditions or biological functions. The data requirements of many such sen-
sors will be modest, since both the resolution and the required update rate are low. 
Some examples [4] are summarized in Table 6.1. 

Table 6.1 Body sensor data rate requirements. 

Signal Depth Rate Data Rate 

Heart rate 8 bits 10/min 80 bits/min 

Blood pressure 16 bits 1/min 32 bits/min 

Temperature 16 bits 1/min 16 bits/min 

Blood oxygen 16 bits 1/min 16 bits/min 

It is clear that these data rates are negligible (around 1bit/s or less), which im-
plies both a very low clock rate on the circuit, and low transmission power for the 
wireless uplink.  

Ultra-low power wireless communications is a major field in its own right, and 
has been discussed in detail in Chapter 4. Currently established specifications such 
as Bluetooth have a power demand well above what is likely to be achievable from 
energy scavengers of reasonable size. However, they are also over-specified for 
many BSN applications. Ultimate power limits depend strongly on maximum an-
tenna size, and this has been modelled for a 1m, 100kbit/s link, based on a Colpitts 
oscillator transmitter in which the antenna coil serves as the inductor in the L-C 
tank circuit [5, 6]. The results are shown in Figure 6.1, where optimum carrier fre-
quencies are indicated, and for antenna radii of a few mm, the required bias currents 
are in the 4–6µA range. Since the minimum rail voltage for such a circuit is about 
1V, this corresponds to 4–6µW. Sub-microwatt transmitter powers are then clearly 
feasible if a reduced duty cycle is used, and very low duty cycle operation would be 
possible with the sensor types given in Table 6.1.  

Another important aspect of the power usage is the sensors themselves. Both 
temperature and pressure sensing can be done by measuring the voltage drop of a 
current through a resistor. In principle, the power needs only to be sufficient to 
overcome thermal noise (≈ 10-20W/Hz at room temperature), and so can be negligi-
ble for the very low bandwidths of the application (as low as 1Hz). To reach such 
theoretical limits would be impractical because of the need for low noise filtering, 
but the calculation indicates that the sensor elements in many cases need not make a 
significant contribution to power consumption compared to the other circuitry. 
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Figure 6.1 Minimum bias current vs antenna size for 100kbit/s transmission 
over 1m, from [6].

Finally, the interface or signal conditioning electronics will also impose power 
loading. The most straightforward requirement will be for A-D conversion; ADC’s 
have been reported with power consumption levels of 1µW [7], and since this is at 
sample rates (4ksps) above our requirements, significantly sub-microwatt levels 
should be achievable. Therefore, total power levels as low as 1µW may well be suf-
ficient for realistic future BSN nodes. 

6.1.2 Batteries and Fuel Cells for Sensor Nodes 

As stated above, batteries are currently used for powering most wireless devices. 
Where the power requirements are modest, primary (i.e. non-rechargeable) batteries 
are usually chosen for their higher energy densities, lower leakage rates and low 
(initial) cost. For BSN applications, a battery lifetime of at least a year will be de-
sirable in many instances. From our previous analysis, a lifetime of one year with a 
few µW as a likely power requirement corresponds to 32J per µW of average 
power. Lithium based primary batteries typically provide 1400–3600J/cc [8], so in 
principle, a lifetime of several years is achievable for a battery well below 1 cc. 
Thus, although the finite lifetime remains a disadvantage and other issues (such as 
operating temperature range and toxicity) may reduce their practicality for BSN ap-
plications, primary batteries remain a very attractive source for sensor nodes. 

Exhaustible sources using fuel are also under investigation for small portable 
electronics, although mainly for higher power levels. The motivation is the very 
high specific energy of hydrocarbon fuels, e.g., 17.6kJ/cc for methanol [9]. Con-
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verting this energy to electrical form in the conventional way, i.e. using a heat en-
gine, is difficult on a micro-scale because of the need to maintain large temperature 
differences. However, micro-engineered heat engines for this purpose are being in-
vestigated [10]. Fuel cells, however, are an attractive alternative, as they require 
much lower temperatures and have no moving parts. A popular variant for minia-
turisation is the direct methanol fuel cell [11]. In these devices, the methanol reacts 
electrochemically with water at the anode, producing free electrons and protons, the 
latter being oxidised to water at the cathode after passing through a polymer mem-
brane. Power levels reported were as high as 47mW/cm2.

Fuel cells may also provide an attractive type of inexhaustible, energy scaveng-
ing source for implantable applications. This can be achieved by using bodily fluids 
as the fuel source, such as glucose and dissolved oxygen in blood [12]. Power levels 
are promising, but operating lifetimes are still low. 

6.1.3 Ambient Energy Sources 

We can move away from finite energy sources by scavenging from the energy types 
present in the node’s environment. There are a variety of such potential sources, 
and all have been investigated to some degree for energy scavenging applications. 
The main categories include motion and vibration, air flow, temperature differ-
ences, ambient electromagnetic fields and light and infra-red radiation. In the latter 
case, solar cells provide an excellent solution. This is a relatively mature technol-
ogy, inexpensive and highly compatible with electronics, and the available power 
levels can be up to mW per cm2. However, the drawback is that the sensor must be 
in a well lit location, correctly oriented and free from obstructions. This creates se-
vere limitations for a BSN application.  

Gathering radio frequency radiation suffers much less from these geometric 
limitations. In the VHF and UHF bands [13], for which miniature antennas can op-
erate with reasonable efficiency, field strengths are from about 10-2 to 103V/m. We 
can approximate the power density crudely as E2/Z0, where Z0 = 377Ω is the im-
pedance of free space. For 10 or 1V/m, for example, this gives 26 or 0.26µW/cm2.
A few V/m thus probably represents the minimum radiation level needed for suc-
cessful energy scavenging. However, even typical urban environments do not show 
these levels except in special areas such as in the vicinity of cellular base stations 
[13]. This suggests that radio frequency scavenging is an approach with limited ap-
plicability.  

Scavenging thermal energy depends on the presence of temperature differences, 
for example between the surface of the body and the ambient. The power available 
is modest; a micro-engineered device reported below 1µW/cm2 for a ∆T of 10K 
[14]. In BSN applications, temperature differences of more than a few K are not 
likely to be available.  

The use of air flow is promising for higher power levels, although with corre-
spondingly higher device size; a micro-engineered axial flow turbine with a radius 
of 6mm has been reported producing 1mW for an air flow of 30l/min [15]. Further 
miniaturisation may make a breath-powered device feasible. 
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Scavenging power from vibration or body motion is perhaps the most promising 
approach for BSNs, and is being pursued by an increasing number of research 
groups. The main advantages of this approach are that devices based on motion 
scavenging can function both on and in the body, and are well suited to relatively 
efficient transduction techniques. It does not require exotic materials and can work 
in any orientation. We can categorise motion scavenging devices as those that de-
pend on the relative motion between two structures, and those that depend only on 
the absolute motion of the single structure to which the device is attached. The for-
mer can offer substantially higher levels of specific power, but will tend to be larger 
and have a very limited number of applicable locations. Heel strike devices, which 
are installed in the shoe and depend on the force between the landing foot and the 
ground, are the most investigated of these [16]. We can call the latter inertial de-
vices. These are very flexible as regards size and location, and will be the main fo-
cus of the rest of the chapter.

6.2 Architectures for Inertial Energy Scavenging

6.2.1 Energy Extraction Mechanisms for Inertial Generators 

The basic operating principle of inertial micro-generators can be described with ref-
erence to the generic architecture shown in Figure 6.2. The inertia of a proof mass 
m, which is suspended on a spring suspension with spring constant k, causes the 
mass to move relative to the generator frame with relative displacement z(t) when 
the frame, with displacement y(t), experiences acceleration. The maximum and 
minimum values of z(t) are ±Zl, as imposed by the finite size of the generator. En-
ergy is converted when work is done against the damping force f( ), which opposes 
the relative motion of the proof mass and the frame. As discussed above, inertial 
generators can be used when only one suitable attachment point is available, as they 
depend on the absolute motion of the frame rather than relative motion between two 
anchor points. For micro-generators of the size scale of interest for BSN applica-
tions, it can normally be assumed that the loading of the “host” structure by the 
generator is too small to affect the host’s motion. This simplifies the analysis, and 
means that the available power is effectively infinite, in the sense that it is not a 
limiting factor on the achievable output of the generator. 

In order to generate useful power, the damper must be an implementation of a 
suitable mechanical to electrical transduction mechanism. Three such mechanisms 
have been extensively investigated for this application: electromagnetic, electro-
static, and piezoelectric. 

Rotating electromagnetic generators have long been in common use, from 
power levels of a few watts to several hundred megawatts. It is possible to imple-
ment the damper of a micro-generator by using the same principle, i.e. that de-
scribed by Faraday’s law of induction. This is illustrated in Figure 6.3, where a 
change of magnetic flux linkage with a coil induces a voltage v(t) in the coil, driv-
ing a current i(t) in the circuit. The combined force f(t) on the moving charges in the 
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magnetic field acts to oppose the relative motion which is causing the change in 
flux linkage, as described by Lenz's law. The mechanical work done against the op-
posing force is converted to heat in the resistance (external load) of the circuit, and 
to stored energy in the magnetic field associated with the circuit inductance.  

Figure 6.2 Generic architecture of inertial micro-generators.

Figure 6.3 Principle of operation of the electromagnetic transducer.

A number of groups have reported micro-generators based on electromagnetic 
energy scavenging. In a recent work by Glynne-Jones et al [17], for example, de-
vices using a coil moving relative to one or two pairs of permanent magnets are de-
scribed. Although power levels above 100µW are reported, the excitation frequen-
cies (100s of Hz) are much higher than can be expected in BSN applications. A key 
difficulty is caused by the generated voltages being proportional to the rate of 
change of flux. Since the achievable flux difference over the range of travel of the 
coil is very limited in these small geometries, rapid motion is needed to generate 
significant voltage. At low frequencies, the motion is too slow, so that not only are 
the generated power levels poor, but the voltages are too low for straightforward 
rectification.  

The second transduction method, electrostatic, involves the use of the force be-
tween opposite charges on a pair of electrodes which move relative to each other 
(i.e. one fixed to the frame, and one to the proof mass). Typically, two possible 
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modes of operation are identified: constant charge, and constant voltage. The first 
involves moving a fixed amount of electric charge through an electric field and thus 
increases the electrical potential of that charge, as illustrated on the left side of 
Figure 6.4. For a parallel plate structure with a variable separation and constant 
overlap, and with a negligible fringing field, the field strength is proportional to the 
(constant) charge and thus the energy density of the electric field is independent of 
plate separation. As the electrode separation increases, additional electrical poten-
tial energy is stored in the increased volume of the electric field. Alternatively, if 
the plates are moved relative to each other with a sliding motion at a constant sepa-
ration, mechanical work is done against the fringing field and there is an increase in 
stored electrical energy because the electric field strength increases with the reduc-
tion in plate overlap. The energy density of the field (proportional to the square of 
field strength) increases faster than the volume of the field decreases.  

Figure 6.4 Principle of operation of the electrostatic transducer. 

The other extreme of operation is constant voltage, illustrated on the right hand 
side of Figure 6.4. Moving the relative positions of the plates (either due to sliding 
or normal movement) changes the capacitance between the electrodes under a con-
stant voltage. If the plate separation is increased with a fixed overlap, the electric 
field strength between the plates falls, causing charge to be pushed off the plates 
into an external circuit as a current flow i(t). If the plates are moved with constant 
separation and changing overlap, the field strength stays constant, but current is 
again forced to flow into the source because the volume of the field decreases. In 
both cases, the mechanical work done is converted into additional electrical poten-
tial energy as an increased charge in the voltage source.  

Because of practical implementation constraints, such as non-zero conductance 
(in the constant charge case) and non-ideal voltage sources (in the constant voltage 
case), real electrostatic transducers work somewhere between these two extremes, 
although in many cases very close to one of them, and both types have been re-
ported in the literature for implementations of micro-generators. For constant 
charge operation, variable gap motion gives a constant force, while for constant 
voltage devices, a constant force is provided by variable overlap motion. As will be 
discussed further below, to obtain the highest output power the transduction force 
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should have the maximum value, throughout the proof mass displacement, that does 
not prevent this displacement. Such power maximisation is not likely to be achieved 
if the applied force is strongly position-dependent. It should also be noted that elec-
trostatic transducers, unlike electromagnetic ones, normally need the application of 
an initial “priming” voltage to generate the damping force, and this represents an 
energy “cost” in the complete cycle. While the priming energy can in principle be 
small compared to the extracted energy, it does add to the device complexity. Elec-
tret designs, employing a buried fixed charge to eliminate the need for cyclic pre-
charging, have been investigated [18]. 

Both variable overlap and variable gap devices have been reported in the litera-
ture. The latter, particularly if micro-engineered, are usually not simple parallel 
plates, but use the so-called “comb-drive” structure of inter-digitated electrodes, as 
this allows the two electrodes to be defined in the same level on-chip. Such struc-
tures are commonly used in MEMS technology for both electrostatic sensing and 
actuation. A key difficulty in energy scavenging appears to be in achieving the 
combination of high capacitance and substantial displacement that is needed to 
maximise power output. High capacitance values are useful as they allow lower 
voltages to be used for the same level of force.  

 Finally, the piezoelectric effect, explained in more detail in [19], is a phenome-
non whereby a strain in a material produces an electric field across that material and 
conversely an applied electric field can produce a mechanical strain. The first of 
these modes can be used to realise micro-generators. When the material is strained, 
some of the mechanical work done on the device is stored as elastic strain energy, 
and some in the electric field brought about by the space charge. Only a small class 
of materials exhibits strong piezoelectric effects, and of these the most commonly 
exploited is the ceramic PbZrxTi(1-x)O3, or Lead Zirconate Titanate (PZT). This can 
be machined as a conventional powder-based ceramic into monolithic pieces, or de-
posited as a thin film for micro-engineered devices. 

Piezoelectric devices offer significant advantages, in particular that relatively 
high voltages can be obtained with modest strains, and no priming is needed. How-
ever, the need for integration of a specialised material, and its associated electrodes, 
adds significantly to the challenge of fabrication, particularly for very small de-
vices. Furthermore, the geometric possibilities are limited: the material has low 
maximum strain, so that a high leverage factor is needed to get large proof mass 
displacement. Most reported devices have used a layered cantilever structure with 
the proof mass at the free end.  

In principle, piezoelectric devices are attractive for BSN applications because 
they do not depend on rapid motion to achieve substantial voltages. However, there 
may be a practical limitation in that the piezoelectric material typically has some 
leakage conductance, which becomes a parasitic path for the generated power of in-
creasing significance as the operating frequency drops. 

These transduction methods provide a useful way of classifying devices of iner-
tial energy scavenging. Another useful distinction, particularly for the BSN applica-
tion regime, is between devices that are mechanically resonant and those that are 
not. Resonance allows an internal displacement amplitude greater than the source 
motion amplitude to be achieved, and this can be useful when the source amplitude 



6. Energy Scavenging       191

is slight, as it may well be for high frequency (e.g. machine) vibration. However, 
human body motion amplitude is likely to be greater in most instances than the di-
mensions of BSN nodes. Body motion also has a complex and widely varying spec-
tral character, which to be effectively exploited by a resonant device is likely to 
need dynamic tuning of the device’s resonant frequency, a capability not yet re-
ported.  

Most reported miniature inertial energy scavengers have been resonant; this is 
partially because in MEMS and other small implementations, support of moving 
parts by flexure suspensions is more practical than other options such as sliding or 
rolling bearings. Since the proof mass is thus a mass on a spring, it is inherently a 
resonant structure. However, it is possible to reduce the suspension stiffness to such 
a degree that the proof mass is effectively freely moving in the desired direction. 
On this basis, an alternative, non-resonant device has been described which oper-
ates in a non-linear fashion, the proof mass moving rapidly between its end-stops at 
the peak of the applied acceleration. This device can be called a parametric genera-
tor, and in the following section we compare its ultimate performance, along with 
the more widely studied resonant types. 

6.2.2 Performance Limits 

A comprehensive analytical framework for inertial energy scavengers was recently 
reported by the present authors and co-workers [20]. This analysis has allowed the 
different architectures to be compared quantitatively, and has derived the achiev-
able power levels and their dependence on both source and device characteristics. 
Key practical constraints were also analysed. The results of that study are summa-
rised here. 

Two resonant topologies and one parametric generator topology were consid-
ered. Of the resonant type, one example is damped by a force which is proportional 
to velocity, the Velocity-Damped Resonant Generator (VDRG), and the other is 
damped by a constant force, the Coulomb-Damped Resonant Generator (CDRG). 
Of the non-resonant, non-linear generators, only the Coulomb-Force Parametric-
Generator (CFPG) is considered here, as the velocity-damped parametric generator 
was found to be ineffective. Variations of VDRGs and CDRGs have been reported 
previously in the literature. Broadly speaking, the electromagnetic and piezoelectric 
devices correspond to VDRGs, and the electrostatic devices correspond to CDRGs. 
In this analysis, the resonant generators were considered to operate in modes in 
which the proof mass does not strike the end-stop limits, i.e. -Zl < z(t) < Zl, and thus 
the only forces which act on the mass are the inertial, spring and damping forces, 
and gravity.  

The source motion was assumed to be harmonic, with amplitude Y0 and fre-
quency ω, from which the maximum acceleration amax can be easily derived as 
ω2Y0. The fundamental parameters determining the generator output are its proof 
mass m, resonant frequency (if any) ωn, and the maximum internal displacement Zl.
From very basic considerations we can derive a maximum power for any energy 
scavenger driven by harmonic source motion. The damping force by which the en-
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ergy is extracted cannot exceed the inertial force on the proof mass, mamax, other-
wise the mass will not move. If energy is extracted in both directions, and taking 
the internal motion range as being 2Zl, we derive a total energy per cycle of 
4Zlmamax = 4Zlm ω2Y0. To convert this to power is simply a matter of dividing by 
the excitation period 2π/ω, giving a maximum power: 

3
02 /max lP Y Z mω π= (6.1)

If the proof mass motion is also harmonic, as in a resonant device, the maximum 
power is in fact somewhat less than this, since the acceleration is not amax for the 
whole journey and so the transduction force must be reduced accordingly. But (6.1) 
does provide us, on the basis of fundamental considerations, an upper bound on the 
power of an inertial energy scavenger of any architecture, construction, transduction 
mechanism or operating mode. It shows the linear dependence on mass and on 
travel range, and the very strong dependence on frequency, indicating the serious 
challenge of achieving useful power levels in the low frequency environment of 
BSNs. In analysis, it was found that for idealised cases of the three architectures 
considered, the optimal output power can always be derived as a function of the two 
dimensionless parameters Zl/Y0 and ω/ωn, and can be normalised to a characteristic 
power Y0

2ω3m.
Analysis of the output power of velocity damped generators is a matter of inte-

grating the product of the damping force and the incremental displacement and av-
eraging this over a cycle. Then the optimum power can be found by choosing the 
damping coefficient to maximise this value. However, if resonant motion is as-
sumed without regard to travel limits, a derivation is obtained which implies infinite 
power at resonance, although a corresponding infinite internal displacement is im-
plied. A realistic assessment requires that the damping force be optimised only up 
to the limit imposed by the maximum travel range. Thus, the achievable power of 
an ideal VDRG takes two forms; firstly, if the damping can be optimised without 
the displacement constraint being breached: 
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and secondly, if the damping is constrained by this limit: 
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In each case ωc is the normalised frequency ω/ωn. It can easily be shown that for 
operation at resonance (ωc = 1), (6.3) reduces to: 
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As anticipated, this is just less than the ultimate limit given by (6.1); a factor π/4 
less in fact. 

The Coulomb damped devices do not form linear systems, because the damping 
force is discontinuous at the boundaries (where the direction changes), and so ana-
lytical solutions are not as straightforward to obtain. Nevertheless, closed form so-
lutions to the equations of motion for the CDRG do exist, from which the optimal 
damping coefficients, and the achievable power levels, can be derived. Just as for 
the VDRG, the maximum power depends on whether or not the optimal damping is 
limited by the internal displacement constraint. If not: 
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although for ωc < 0.72 this is not valid because the calculated optimal force results 
in sticking in the motion. For displacement constrained operation: 
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In both cases the function U is defined as: 
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It can easily be shown that at resonance, (6.6) reduces to (6.4), i.e. the optimum 
power of the CDRG and VDRG are the same if operated at resonance. 

The analysis of the CFPG is essentially the same as that used to derive (6.1); the 
Coulomb (electrostatic) force is constant for the whole travel distance, and so the 
energy per transit is just the applied force times the travel range. However, a correc-
tion is needed to (6.1) because the force applied, in the case of harmonic source mo-
tion, cannot be equal to amax since this acceleration is reached only instantaneously 
at the extremes of the frame displacement. Thus we reduce the damping force to 
βamax, where β is a dimensionless coefficient, giving: 

3
0 0

2
maxP Y Z mβ ω

π
= (6.8)

In this general formulation, the displacement limit of the device, Zl, has been re-
placed by the actual internal motion amplitude Z0. Thus, determination of the output 
power requires not only the optimal value of β, but also the corresponding travel 
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range Z0, to be determined. For large source displacement amplitudes, however, it 
can be shown that the optimal β value is that which just allows the full travel range 
to be traversed, so that Z0 = Zl. Specifically, this proves to be the case for 
Zl < 0.566Y0, i.e. the source motion amplitude is more than double the internal dis-
placement limit. This will almost certainly be the case for wearable or implanted 
devices excited by body or limb motion. It may not be the case for implanted de-
vices driven by cardiac motion. 

Having derived expressions for the achievable power levels of the three main 
device architectures, we can now compare them and determine which is the most 
effective for a given operating regime. Figure 6.5 shows the result, indicating the 
operating regions where each architecture is superior and what the maximum power 
level is, normalised to Y0

2ω3m.

Figure 6.5 Comparison of inertial energy scavenging architectures, with nor-
malised maximum power output. From [20].

Several general conclusions can be drawn from Figure 6.5. For large devices or 
low source amplitudes (Zl/Y0 > 0.1), the resonant devices are superior, except where 
the frequency of operation is more than 2 times below the achievable resonant fre-
quency, in which case the parametric generator is preferred. The CFPG is superior 
for all cases where the device size is well below the source motion amplitude. As 
mentioned above, this is likely to be the case for many BSN applications. Further-
more, the CFPG, being non-resonant, can operate effectively over a wide range of 
source frequencies (as would be expected with BSN) without the need for dynamic 
tuning. For these reasons, we have investigated MEMS implementations of CFPG 
devices excited at low frequency, as described in detail in Section 6.3. 

All of the analysis above has been looking at harmonic source motion. Clearly 
body motion is of complex and varying spectral form, and for that reason analysis 
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of the output of inertial energy scavengers with realistic body motion excitation has 
been carried out [21]. Motion waveforms were captured for three orientation axes, 
at each of a number of body locations, using accelerometers, and the power output 
of the various scavenger architectures, for a range of sizes, were simulated and 
compared using these waveforms. The results are shown in Figure 6.6. As antici-
pated, the CFPG devices are superior for small devices, particularly for lower body 
locations where the displacements were greater. 
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Figure 6.6 Comparison of architecture performance for generators mounted 
on the upper and lower body. Output power is normalised by the value of 
proof mass m. After [21].

6.3 Fabrication and Testing

6.3.1 Device Fabrication and Structure  

Most reported micro-scale inertial energy scavengers have been mechanically reso-
nant devices. As discussed above, these are not well suited to the low frequencies of 
human powered applications, and so we have developed a new class of device, the 
parametric generator [20, 22, 23]. Here we describe its construction and operating 
principles. 
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Figure 6.7 Exploded view of the generator construction. From [22].

An exploded view of the device structure is shown in Figure 6.7, with the 
phases of operation illustrated in Figure 6.8. The structure consists of a moving 
plate attached to a frame by a low stiffness suspension, a bottom plate containing 
the counter-electrode and charging studs, and a top plate with the discharge con-
tacts. The operation cycle proceeds as follows: 

• At the start of a generation cycle, the capacitor is at its maximum 
capacitance position, i.e. minimum separation (idle phase). 

• The capacitor is pre-charged to a relatively low voltage which 
will give the optimal value of β for the current operating condi-
tions (pre-charging or priming phase).

• The generator frame is accelerated by the input motion. The proof 
mass moves along with the frame (wait phase) until the magni-
tude of the frame acceleration is sufficient for the inertial force on 
the proof-mass to overcome the electrostatic force of attraction 
between the plates, at which point the proof-mass separates from 
the frame of the generator and starts to move relative to it. At the 
point of separation the electrical contact between the moving 
plate and the charging circuit is broken. 

• The relative movement proceeds, and increases the volume of the 
electric field between the capacitor plates as they separate. Be-
cause the charge on the plates remains constant, the energy den-
sity of the electric field remains constant and so the electrical po-
tential energy stored increases with the volume of field (flight 
phase).

• The moving plate and proof-mass slow down relative to the gen-
erator frame as they approach maximum plate separation. Under 
optimal conditions for electrical energy generation, the relative 
velocity tends to zero as the maximum displacement is reached.  
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• Whilst the plates are separating, the voltage across them increases 
in proportion to the separation (because the electric field strength 
is constant). 

• The variable capacitor, now at its lowest capacitance and highest 
voltage, is discharged through power conversion circuitry and the 
energy is available to drive a load (conversion phase). 

Figure 6.8 Phases of operation of the CFPG.

The device was fabricated using a three-wafer construction. The central wafer 
contains a silicon proof mass, forming one plate of the variable capacitor, along 
with a silicon frame and a polyimide suspension, metalised for electrical contact. 
The proof mass is about 0.12g, and measures ≈ 11×11mm×0.4mm thick. It is sepa-
rated from the frame by Deep Reactive Ion Etching (DRIE), through the whole wa-
fer thickness, after patterning of the suspension. Polyimide is chosen to give the re-
quired very low suspension stiffness, as discussed above.  

The bottom wafer is glass, to minimise the parasitic capacitance. It includes the 
fixed electrode of the variable capacitor itself, and the charging studs and spacers 
for the moving plate and middle wafer, the studs being deposited by electroplating. 
These set the minimum gap at about 6 m, giving a theoretical starting capacitance 
of ≈180pF. The measured (static) starting capacitance was ≈150pF, the difference 
being attributed to wafer bow. The top wafer is also glass, and has studs for dis-
charge. Spacer studs 300µm thick, fabricated from SU8 polymer on the top and bot-
tom wafers, set the layer separation, and thus the proof mass travel distance. The 
minimum (discharge position) capacitance was measured at 5.5pF. Figure 6.9 
shows the completed device. 

6.3.2 Device Testing  

The device was tested on a low frequency shaker platform, for frequencies in the 
range 10–100Hz. Reproducible results were not obtained at lower frequencies; this
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Figure 6.9 Prototype CFPG fabricated using silicon micromachining. From [22].

is partly because the holding force is not yet sufficient to optimize performance at 
these frequencies, and also because of limits on the maximum shaker displacement 
amplitude. Motion was monitored using a linear displacement transducer or an ac-
celerometer, at lower and higher frequencies respectively. Although monitoring of 
the moving plate voltage during operation is not required in a working device, it 
was carried out here for diagnostic purposes. The voltage on the moving plate in re-
lation to the acceleration of the generator frame during device operation is shown in 
Figure 6.10. 

As the pre-charge voltage (and thus the holding force) is increased, the release 
point should occur later in the cycle. Experiments were carried out to verify this, 
and the behaviour matches the simulations well (Figure 6.11).  

Depending on operating frequency and amplitude, output voltages of up to 
220V were obtained, corresponding to a net generated power of 120nJ per cycle. 
This is well above previously reported values for MEMS electrostatic generators [2, 
24], which are typically a few nJ/cycle or less.  

However, the power obtained remains significantly below theoretically achiev-
able values. We believe an important limitation in this case is the motion of the 
proof mass in unwanted degrees of freedom; in particular, tilting motion. This re-
duces the capacitance ratio, by decreasing the charging capacitance if the moving 
plate is not parallel to the fixed plate and does not contact all the charging studs, 
and by increasing the discharge capacitance. The dynamic starting capacitance, in    
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Figure 6.10 Measured acceleration and voltage of moving plate on prototype 
CFPG, compared to simulation results. From [22]. 

Figure 6.11 CFPG moving plate acceleration at release point vs pre-charge 
voltage. From [22]. 

particular, was found to deviate significantly from the static value, at only  50pF. 
This corresponds to a much greater effective minimum plate separation (assuming 
parallel plates) of about 21µm. The experimental results provide further evidence 
that the effective capacitance ratio during operation is below the design value. The 
maximum inertial force Fi is mamax, and with m = 0.12g and a maximum accelera-
tion amax of   40m/s2 (Figure 6.10), Fi does not go above  5mN. The electrostatic 
holding force is given by: 
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Taking the design values of C = 180pF and minimum plate separation 
dmin = 6µm, and the applied priming voltage of 30V (Figure 6.10), we get 
Fe = 13.5mN, suggesting that the inertial force is never sufficiently strong to release 
the mass. With the measured effective (dynamic) capacitance of 50pF and an in-
creased minimum plate separation, Fe falls below the maximum inertial force as ex-
pected.

Another deviation that can be seen in the experimental results is the late landing 
of the moving plate on the charging studs, and the slower than predicted transit to-
wards the discharging studs. Viscous air damping provides a likely explanation for 
these differences.  

Future designs will address these issues by better restraining motion in un-
wanted axes, through a modified suspension, and reducing air damping through per-
foration of the plates or operation in vacuum. As well as these improvements being 
made, the starting capacitance should be increased from its current design value, in 
order to reduce the priming voltage at which the optimum holding force is obtained 
and to reduce the impact of parasitics on the achievable capacitance ratio. 

6.4 Module Design and Simulation 

6.4.1 System Modelling 

In Section 6.2, we examined results from the modelling of lumped element compo-
nents (mass-spring-damper systems) arranged into three architectures of generator, 
in order to determine which architecture attains the highest power density for hu-
man powered motion. The CFPG was shown to be superior in this case and a proto-
type CFPG was constructed. This section discusses the modelling of a capacitive 
CFPG.

In order to achieve a suitable level of detail in the modelling of a CFPG, it is 
necessary to consider what components and subsystems, other than the variable ca-
pacitor (which provides the Coulomb damping) are required in the implementation 
and to consider the interactions between these subsystems. A block diagram of a 
constant charge CFPG system (showing both the mechanical and the required elec-
trical systems), is shown in  

Figure 6.12. As can be seen from that figure, aside from the mechanical genera-
tor itself (the variable capacitor) and the circuitry which pre-charges and discharges 
the capacitor, there are a number of other subsystems required for operation of the 
CFPG. These are: 
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Figure 6.12 Block diagram of a CFPG, showing power flows. 

• Charge control: It is important that the holding force of the trans-
ducer of the CFPG, in this case controlled by the voltage across a 
parallel plate capacitor, is set to the correct value in order to 
maximise the generator power density. Circuitry is required for 
controlling this charging. Because charging always occurs when 
the variable capacitor is at its minimum separation, the charging 
can be done through a mechanical contact on the end-stop. 

• Discharge control: In many operating modes, maximum power is 
obtained from the CFPG if the moving capacitor plate travels the 
furthest distance possible (i.e. a total distance of 2Zl). In this op-
erating mode the capacitor discharge can be self-synchronised 
with the input motion because the discharge could also occur 
through mechanical contacts on end-stops. However, under some 
circumstances, in particular for sinusoidal motion for which the 
value of Zl/Y0 is greater than 1.16, the capacitor must be dis-
charged before it has travelled the full distance of 2Zl. Conse-
quently, discharge control circuitry, which includes a controlled 
semiconductor switch, is required. 

• Storage and regulation: The load electronics (such as a radio, 
sensor or ADC) will be designed to run off a specific voltage. If 
the generator is operated optimally with a changing input motion 
frequency or amplitude, the output voltage will be variable. Volt-
age regulation is therefore necessary. In addition, as was shown 
from Figure 6.10, the raw output of the generator without proc-
essing is unsuitable for powering a load. If the micro-generator is 
powered from human walking motion then there will be periods 
of inactivity and no generation. If the load electronics must run at 
times when the generator is not generating, some energy storage 
facility is required to provide electrical power under these cir-
cumstances. 

• Power saving: As a power saving feature, there is potential for the 
load to request a value of rail voltage depending upon the re-
quired performance of the load at a given point in time. Higher 
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performance from the load may require a higher rail voltage. This 
will require some interfacing between the power supply and the 
load. 

The complete micro-generator system is clearly a mixed electro-mechanical sys-
tem. Additionally, because the voltage on the moving plate capacitor is dependent 
upon the mechanical system (the relative position of the mass and frame), and the 
mechanical dynamics (in particular the force between the plates) is dependent upon 
the plate voltage, there is a two way interaction between the electrical and mechani-
cal system. Therefore, the mechanical and electrical sub-systems must be modelled 
together in a coherent simulation. Simulink is perhaps the most obvious choice of 
simulation platform; however, as will be demonstrated later in this chapter, accurate 
semiconductor modelling (in the power electronics) is required. 

PSpice [25], a SPICE implementation by OrCAD, contains an Analogue Behav-
ioural Modelling (ABM) library which contains ideal mathematical functional 
blocks and controlled electrical sources. These blocks can be used to realise 
mathematical functions including differential equations. 

The mechanical system of the CFPG can built up in simulation starting from the 
differential equation of motion of the proof-mass in the CDRG: 

.sgn( )mz kz F z my= − − − (6.10)

This system can easily be constructed with two integrators and other blocks from 
the PSpice ABM library as shown in Figure 6.13 (A sign function block is not a na-
tive part of the ABM library but can easily be constructed with, for example, a high 
gain comparator with an output that saturates at ±1). The CDRG system can then be 
modified to realise a model of a CFPG, by setting the spring constant very low (to 
zero in the ideal case) and by adding in the forces acting on the mass when the mass 
strikes the end stops. 

Figure 6.13 SPICE ABM model of CDRG.

A key requirement for achieving a simulation of the CFPG in SPICE is the re-
alisation of a moving plate capacitor model. The standard SPICE capacitor compo-
nent (known simply as C in SPICE syntax) is a 1-port component of fixed capaci-
tance (the value of which is declared in the netlist prior to running the simulation) 
which implements the first order differential equation I =C dV/dt.
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The CFPG simulation requires a capacitor model with the following characteris-
tics: the device should always obey the equation I =C dV/dt, but the value of the 
capacitance needs to be time varying, and able to be controlled from the mechanical 
part of the simulation (i.e. the relative position of the capacitor plates will set the 
electrical value of the capacitor); the device must provide the normal electrical port 
to interface with the electrical side of the simulation, and must also provide a me-
chanical output of the electrostatic force on the capacitor, because the value of this 
force effects the mechanical dynamics of the model. This mechanical force (calcu-
lated from the geometry of the capacitor and the charge of the capacitor plates) 
would then replace the F·sgn( ) block shown in Figure 6.13. 

Figure 6.14 shows an implementation of a variable parallel plate capacitor in 
PSpice. The voltage at the output of the electrical port, Vout, is given by: 

(1 )out B AV V V= + (6.11)

Figure 6.14 Variable parallel plate capacitance SPICE model.

The current through the electrical port is given by: 

0
BdVI C

dt
= (6.12)

which can be written as: 

0

1
out

A

C dVI
V dt

=
+

(6.13)

This is therefore a realisation of a capacitor whose value can be controlled by alter-
ing the value of VA. The normal force between the plates of a parallel plate capacitor 
can be calculated as being: 

21
2

VF A
d

ε= (6.14)
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This equation can be implemented in SPICE by again using the ABM library and 
feeding the value of F into the rest of the mechanical system of the generator 
model. The realisation of this component completes the basic electro-mechanical 
simulation model of the CFPG. 

Figure 6.15 Idealised SPICE model with optimal pre-charge.

6.4.2 Integrated Simulation 

A simulation result from the PSpice model of the generator mechanics, including 
the moving plate capacitor, is shown in Figure 6.15. A basic electrical system was 
set up around this model in order to charge and discharge the capacitor at the cor-
rect points in the cycle to generate electrical energy. This involved charging the ca-
pacitor at the maximum capacitance and discharging at minimum capacitance into a 
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load resistor. The charging and discharging were done through voltage controlled 
switches which were activated when the mass struck the end-stop contacts. This 
mimics the operation of mechanical contacts. Semiconductor switches were not 
used at this stage of testing. 

As can be seen, the moving plate capacitor is charged at low voltage. When the 
acceleration of the frame is large enough to overcome the holding force between 
mass and frame, the mass breaks away. This increases the separation of the capaci-
tor electrodes and thus decreases the capacitance. When the capacitance reaches a 
minimum value, the capacitor is discharged. The corresponding energy flows can 
be seen in the lower plot of Figure 6.15. A small amount of pre-charge energy is re-
quired so that a large discharge energy can be attained. The difference between the 
two is the generated electrical energy. 

As can be seen, the discharge voltage of the capacitor, in this simulation, is 
around 500V. Whilst the absolute value of this voltage will change depending upon 
operating conditions and the geometry of the generator, it is safe to assume that it is 
too high to power the load electronics directly. Suitable power processing, which 
can down-convert the voltage at the output of the generator, is therefore required. 

6.5 Power Electronics and System Effectiveness 

6.5.1 Power Electronics Requirements and Trade-Offs 

The previous section noted the interaction between the electrical and mechanical 
systems, and that the output of the CFPG is at a high voltage, with only a very small 
quantity of charge being present. Power processing electronics are therefore re-
quired to down-convert the output of the moving plate capacitor to a voltage suit-
able for powering the load electronics. The most simple step-down converter topol-
ogy is the buck design, and this is the topology that has been used in this work. The 
converter, attached to the moving plate capacitor, is shown in Figure 6.16. The 
usual configuration of the buck converter uses a diode for freewheeling the current 
through the inductor when the high-side MOSFET is switched off. In this imple-
mentation, the low side diode is replaced by a MOSFET, so that the high-side gate-
drive, referenced from the drain, can be charged from a 3V source. The additional 
diode, in series with the inductor, stops the output discharging when the low-side 
MOSFET is on to charge the high-side drive. Before being able to correctly specify 
the component values, the trade-offs in the generator system performance as a func-
tion of device parameters must be understood, and this can be estimated by defining 
the system’s effectiveness. 

The system effectiveness is defined as a ratio between the useful energy output 
from the generator and the maximum amount of useful energy, ˆ

fieldW , that could 
have been generated if the generator had been operating optimally. The useful en-
ergy output from the system (which can be used to power a load) is the energy ex-
tracted from the down-converter power processing circuitry, Eout, less the energy 
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required to pre-charge the capacitor on the next cycle, Epre-ch, and any additional 
overhead, such as generator control, Eo-head . The system effectiveness is therefore: 

ˆ
out pre ch o head

system

field

E E E

W
η − −− −

= (6.15)

Figure 6.16 Step down converter for electrostatic micro-generator. From [26].

Effectiveness and efficiency ratios can now be defined for the various parts of 
the generation cycle. In order for the variable capacitor to be able to generate en-
ergy, a certain amount of charge must be pre-loaded onto the capacitor before the 
inertia of the mass causes the plates to separate. The amount of energy stored on the 
closed capacitor plates, Eclosed, is a fraction of the energy required from the pre-
charge energy, Epre-ch, taken from the generator output. Losses may be due to para-
sitic capacitance in parallel with the moving plate capacitor and ohmic losses asso-
ciated with charging the capacitor: 

closed
pre ch

pre ch

E
E

η −
−

= (6.16)

When the plates separate, a maximum amount of work, ˆ
fieldW , can be done 

against the electric field. The limits on ˆ
fieldW  are set by the mechanical operating 

conditions of the generator, as described in Section 6.2. If the generator has been 
pre-charged to a non-optimal value, or if charge leaks off the plates during plate 
separation, only fieldW  work will be done against the field, allowing a mechanical 
effectiveness to be defined as: 

ˆ
field

mech

field

W

W
η = (6.17)

As the plates separate, some charge may leak off the plates through a finite con-
ductance path between the plates, or alternatively be shared with the parasitic ca-
pacitance of the power converter attached to the plates. Most of the energy lost 
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from the plates during the plate separation cannot be recovered, meaning that the 
only available electrical energy (for driving a load) when the plates have reached 
their full separation, is the energy stored on the variable capacitor itself. This is jus-
tified because almost all the charge which leaks off the generator during the plate 
separation is stored on the junction capacitance of the drain-body diode in the 
MOSFET. When the MOSFET is turned on to discharge the generator capacitor, 
this energy is lost as the drain body capacitance is internally short circuited within 
the MOSFET. This allows a generation efficiency, genη to be defined as: 

open
gen

field closed

E
W E

η =
+

(6.18)

The high voltage on the open generator capacitor then has to be down-converted to 
low voltage. The efficiency of this down-conversion can then be defined as: 

out
conv

open

E
E

η = (6.19)

The overall system efficiency can be calculated from these sub-system efficiencies 
by defining a pre-charge ratio as:  

closed
pre ch

field

E
W

κ − = (6.20)

and a pre-charge recovery ratio as:

pre ch o head
rec

out

E E
E

κ − −+
= (6.21)

These quantities give an indication of the electrical energy gain associated with the 
system, i.e. the fraction of the generated energy that has to be initially supplied in 
an electrical form in order that the generation can take place. 

The overall system effectiveness can then be written as: 

ˆ

(1 ) (1 )

out pre ch o head
system

field

mech pre ch gen conv rec

E E E
W

η

η κ η η κ

− −

−

− −
=

= × + × × × −
(6.22)

As can be seen from (6.22), maximising the overall system effectiveness re-
quires maximising several terms and minimising others. The three main system ef-
ficiencies, κmech, κgen and κconv should be maximised. κrec should be minimised and 
κpre-ch should be maximised. However, it is not possible to treat the maximisation 
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and minimisation of these terms in isolation because altering the system to have a 
positive effect on one term may have a negative effect on another.  

Parasitic capacitance and conductance in parallel with the moving capacitor will 
decrease both ηmech and ηgen. Both of these terms need to be high in order to achieve 
a high value of ηsystem. This requirement places certain constraints on the power 
semiconductors, in particular their behaviour in the off-state. They must have very 
high off-state impedances and very low parasitic capacitances. However, in order 
that the conversion efficiency, convη , remains high, the semiconductor devices must 
also have a low on-state resistance.  

Various trade-offs in system effectiveness will now be discussed, for instance: 

• Increasing the pre-charge voltage can lead to an increase or de-
crease in ηmech. The pre-charge voltage must be set so that the 
value of β is correct, as described in Section 6.2. Changes in the 
frame motion may be beneficial or detrimental to ηmech depending 
upon the limitations on setting the pre-charge voltage. An in-
creased plate flight-time may be necessary to achieve higher val-
ues of ηmech, but this will reduce ηgen due to the increased charge 
leakage from the plates. 

• Increasing the semiconductor cross sectional area will tend to in-
crease ηconv until parasitic capacitance begins to dominate, at 
which point further increases will decrease ηconv. Also, increasing 
the area will decrease ηgen as increased charge sharing occurs. 
Additionally, charge sharing can reduce Wfield, thus reducing 
ηmech.

• Increasing the inductance of the converter will tend to decrease 
conduction losses and thus increase ηconv. However, increasing the 
inductance above a certain point may increase the parasitic ca-
pacitance (of the inductor) and ultimately cause a reduction in 
ηconv. This increased parasitic capacitance may also decrease ηgen.

• Increasing the length of the device drift region (used for voltage 
blocking) can allow reduced doping of that region, and thus re-
duces the semiconductor device’s capacitance and hence in-
creases ηgen. Increasing this length will also increase conduction 
losses in the devices, but may reduce losses due to reduced ca-
pacitances of the diode in the buck converter. If the drift region is 
increased in length to increase the voltage blocking capability of 
the device, it is possible that ηmech could be increased. 

A maximum value of parasitic capacitance and leakage conductance can be 
found by considering the energy that is actually generated, relative to Eopen, the en-
ergy that would be on the capacitor at maximum plate separation with no loading, 
as a function of parasitic capacitance and resistance in parallel with the generator. 
The results are shown in Figure 6.17. The requirements for the semiconductors are 
unusually strict: to maintain 80% of the generated energy the off-state loading 
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should be more than 1012Ω and less than 1pF. These values are not available with 
standard discrete MOSFETs (or other switching devices) rated for high voltage 
blocking. 

6.5.2 Semiconductor Device Design 

Power semiconductors with the highest possible off-state resistance and lowest 
parasitic capacitance were designed [26, 27]. The semiconductor device processing 
steps had to be compatible with MEMS processing (so that in the future a fully in-
tegrated generator can be realised) and a thin-layer Silicon-on-Insulator (SoI) proc-
ess was used. Devices designed using this thin-layer SoI process inherently have 
lower capacitance between their terminals than those made with more traditional 
process technologies, because the growth of the depletion layer is constrained so 
that it can only grow in the axis which is useful for voltage blocking.  

Figure 6.17 Dependence of generator-converted energy as a function of para-
sitic capacitance and conductance. From [26].

Initially, a MOSFET was designed (Figure 6.18). The long n- region is used to 
support the high blocking voltages. Although the average currents involved in the 
micro-generator application are small, the peak currents can be high (due to the 
high resonant frequency of the variable capacitor and small values of realisable on-
chip inductor used in the buck circuit). High voltage MOSFETs suffer from rela-
tively high on-state resistance. One possible improvement to the MOSFET, in order 
to reduce the on-state impedance, is to add a p+ diffusion to the drain of the 
MOSFET, creating an IGBT (Figure 6.19). This structure utilises conductivity 
modulation of the n- region to reduce the on-state losses, and improvements were 
seen using this device in place of the MOSFET. 
 A further improvement to the IGBT structure is a thyristor structure. The MOS-
Triggered Thyristor (MTT) shown in Figure 6.20 realises a lower value of on-state 
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resistance than the IGBT. In the IGBT, the hole current flowing in the emitter p-
base material can cause a voltage drop which is sufficient to forward bias the p-base 
n+ junction, causing electrons to be injected into the device without the need for 
them to flow through the inverted p-base which forms the channel. This effectively 
eliminates the high resistance of the pinched off channel, and the device is said to 
have latched up because it is not possible to turn the device off via the gate. In this 
application, it is not necessary to switch off the MTT as the current naturally com-
mutates to zero. The MTT is a modification of the IGBT which allows latch-up to 
occur more easily. Simulations of these custom-designed semiconductors in a finite
element device design package showed that the MTT was the superior device in this 
application. 

Figure 6.18 SOI MOSFET. From [26].

Figure 6.19 SOI IGBT. From [26]. 

Figure 6.20 SOI MTT. From [26].
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Figure 6.21 Comparison of SPICE MOSFET model to FE results.

Figure 6.22 Sub-circuit SPICE model of power MOSFET. 

6.5.3 Coherent Simulation 

As stated previously, the interaction between the electrical and mechanical system 
of the generator means that a combined simulation is required, and this was 
achieved in PSpice. In order to accurately model the power electronics, SPICE 
models of the custom semiconductor devices had to be created. The normal SPICE 
models do not accurately model some of the effects which occur in power semicon-
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ductor devices. As an example, Figure 6.21 shows a best fit SPICE model curve 
trace of the custom MOSFET device in comparison to the FE simulation result. The 
discrepancy at the knee of the curve is due to JFET pinch at the drain end of the 
MOS channel, and is not present in signal MOSFETs. When a sub-circuit SPICE 
model is used (Figure 6.22) which accounts for this and other effects, the curve fit 
is significantly better (Figure 6.23). 

Figure 6.23 SPICE sub-circuit model compared to FE result. From [6].

Figure 6.24 Comparison of generator operation with ideal switches and cus-
tom MOSFETs. 

Once SPICE models of the custom semiconductor devices were achieved, a co-
herent system simulation, including the generator mechanical system and power 
electronics (along with detailed semiconductor device effects) could be run. Figure 
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6.24 shows a comparison between the operation of a CFPG using ideal switches in 
the power converter compared to using realistic MOSFET models. As can be seen, 
the generated voltage is less when realistic MOSFET models are used, and the plate 
flight time is also less (because the attractive force between the electrodes is less as 
due to charge sharing and leakage). 

6.6 Discussion and Conclusions 

6.6.1 What Is Achievable in Body-Sensor Energy Scavenging? 

We saw in Section 6.2 that for a given source frequency ω and amplitude Yo, the 
maximum extractable power from an inertial generator depends only on its proof 
mass m and internal displacement amplitude Zl, and is given by  

3
max 0

2
lP Y Z mω

π
=  (6.23) 

We can then define a normalised power Pn = P/(Y0Zlω3m), which should have a 
maximum value of 2/π = 0.637. This quantity Pn is a good measure of how close the 
performance of a specific device comes to the optimum level. Therefore we have 
calculated Pn for those inertial energy scavengers described in the literature, and the 
resulting values are plotted in Figure 6.25 as a function of year of publication.  
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Figure 6.25 Normalised measured power Pn vs year of publication for re-
ported inertial devices. 
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An upwards trend can clearly be seen, although the best values are still well be-
low the theoretical maximum of 0.637. It should also be noted that for most re-
ported devices, not all the parameters needed to calculate Pn are unambiguously 
given so that estimates were required in these cases, and in a few cases the informa-
tion provided was insufficient even for an estimate of Pn to be made with any con-
fidence, so these devices are not plotted. 

It can also be noted that for a given volume, the performance limiting value Zlm
depends on the fraction of volume taken up by the mass, and on the device shape 
and its direction of internal motion. Firstly for a given shape and internal direction, 
allowing the proof mass to occupy half the volume gives the maximum product 
Zlm, so that if the device is a cube of dimension a, Zlm will be given by ρa4/8, or 
equivalently ρV4/3/8, with ρ the proof mass density and V the device volume. This 
scaling of power with V4/3 indicates that the achievable power density drops as the 
devices reduce in size, although not rapidly. 

Although Pn should not drop with volume, as it is normalised to device size, the 
same data used for Figure 6.25, but now plotted against device volume (Figure 
6.26), show that typically the best Pn values have been achieved for larger devices. 
This is likely an indication of the technological difficulties encountered at smaller 
size scales, for example the greater difficulty in achieving high magnetic flux gradi-
ents. Again, estimations have been made where the published reports contain insuf-
ficient detail. 
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Figure 6.26 Normalised measured power Pn vs device volume for reported 
inertial devices. 

For a given volume, half occupied by the proof mass, the internal displacement 
limit depends on the device shape or aspect ratio. Ideally, one direction would be 
elongated, so that a long thin cylinder would be an efficient shape from this point of 
view. However, the volume, independent of shape, is unlikely to be the key con-
straint. Also, the fabrication technology may well put limits on shape. For example, 
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in MEMS processing or for other planar techniques, one dimension (the out-of-
plane one) is typically much shorter than the other two. This constrains the device 
to a shape like that described in Section 6.3. In such a case, power would clearly be 
maximised if the travel is in one of the long directions. Again, however, practical 
constraints may mitigate against this choice. For example, it is difficult to achieve 
long travel in a lateral (in-plane) suspension without excessive ease of motion in 
unwanted axes, both out of plane and rotational.  

Assuming such limitations are overcome and a planar device is constructed with 
lateral motion, we can use this format to calculate a maximum specific power for 
inertial devices in BSN applications [6]. We assume an aspect ratio (out-of-plane to 
in-plane dimension) of 10, and a proof mass specific gravity of 20 (gold); for the 
source, we assume a frequency 1Hz and a maximum displacement of 25cm. Then: 

P  1.7V4/3 mW/cm4 (6.24)

For a 0.1cm3 device this gives a maximum power of 80µW; for a cubic millimetre 
device, only 0.17µW. This suggests 10’s of mm3 are likely to be needed for an iner-
tial scavenging device to be of much value for foreseeable body sensor nodes. 

6.6.2 Future Prospects and Trends 

Inertial energy scavenging continues to attract attention from a large number of re-
searchers, and as shown in Figure 6.25, the performance levels achieved continue to 
rise. Body-powered applications, however, remain a great challenge because of the 
low specific power levels at low frequencies, and so substantial progress will be 
needed in reducing power requirements, particularly for wireless data transmission, 
before such solutions become feasible. However, such progress is certainly being 
made, as reported in other chapters.  

The body motion that may power energy scavenging will vary substantially with 
time, and this variation is unlikely to correspond with the varying power demands 
of the sensor node. Therefore some energy storage is almost certain to be required. 
While mechanical energy storage based on MEMS is conceivable, there is little sign 
of such an approach being developed and so secondary batteries are likely to be 
used. This is also likely to be the case for other, non-inertial forms of energy scav-
enging. This suggests that if scavenging methods are successfully exploited, they 
are likely to be supplementary to, rather than a replacement for, battery technolo-
gies. The need for integrated power conditioning circuits with energy scavenging 
also encourages a trend towards intelligent energy modules, possible incorporating 
several forms of scavenging as well as storage, power conditioning, and power 
management electronics.  



216       Body Sensor Networks 

References 

1. Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. 
IEEE Pervasive Computing 2005; 4(1):18-27. 

2. Roundy S, Wright PK, Rabaey JM. Energy scavenging for wireless sensor net-
works. Boston, Massachusetts: Kluwer Academic Publishers, 2003. 

3. Mitcheson PD. Analysis and optimisation of energy-harvesting micro-
generator systems. Imperial College London, London, PhD Thesis, 2005. 

4. Balomenos T. User requirements analysis and specifications of health status 
analysis and hazard avoidance artefacts. DC FET Project ORESTEIA, Deliver-
able D02, 2001. 

5. Yates DC, Holmes AS, Burdett AJ. Optimal transmission frequency for ul-
tralow-power short-range radio links. IEEE Transactions on Circuits and Sys-
tems I: Regular Papers 2004; 51(7):1405-1413. 

6. Mitcheson PD, Yates DC, Yeatman EM, Green TC, Holmes AS. Modelling for 
optimisation of self-powered wireless sensor nodes. In: Proceedings of the 
Second International Conference on Wearable and Implantable Body Sensor 
Networks, Imperial College London, 2005; 53-57. 

7. Sauerbrey J, Schmitt-Landsiedel D, Thewes R. A 0.5-V 1- W successive ap-
proximation ADC. IEEE Journal of Solid-State Circuits 2003; 38(7):1261-
1265. 

8. Brodd RJ, Bullock KR, Leising RA, Middaugh RL, Miller JR, Takeuchi E. 
Batteries, 1977 to 2002. Journal of the Electrochemical Society 2004; 
151(3):K1-K11. 

9. Roundy S, Steingart D, Frechette L, Wright P, Rabaey J. Power sources for 
wireless sensor networks. In: Proceedings of the First European Workshop on 
Wireless Sensor Networks 2004; Springer LNCS 2920:1-17. 

10. Whalen S, Thompson M, Bahr D, Richards C, Richards R. Design, fabrication 
and testing of the P-3 micro heat engine. Sensors and Actuators A: Physical
2003; 104(3):290-298. 

11. Yen TJ, Fang N, Zhang X, Lu GQ, Wang CY. A micro methanol fuel cell op-
erating at near room temperature. Applied Physics Letters 2003; 83(19):4056-
4058. 

12. Sato F, Togo M, Islam MK, Matsue T, Kosuge J, Fukasaku N, et al. Enzyme-
based glucose fuel cell using Vitamin K-3-immobilized polymer as an electron 
mediator. Electrochemistry Communications 2005; 7(7):643-647. 

13. Mantiply ED, Pohl KR, Poppell SW, Murphy JA. Summary of measured ra-
diofrequency electric and magnetic fields (10kHz to 30GHz) in the general and 
work environment. Bioelectromagnetics 1997; 18(8):563-577. 

14. Strasser M, Aigner R, Franosch M, Wachutka G. Miniaturized thermoelectric 
generators based on poly-Si and poly-SiGe surface micromachining. Sensors 
and Actuators A: Physical 2002; 97-98:535-542. 

15. Holmes AS, Hong G, Pullen KR, Buffard KR. Axial-flow microturbine with 
electromagnetic generator: design, CFD simulation, and prototype demonstra-
tion. In: Proceedings of the Seventeenth IEEE International Conference on Mi-
cro Electro Mechanical Systems 2004; 568-571. 



6. Energy Scavenging       217

16. Shenck NS, Paradiso JA. Energy scavenging with shoe-mounted piezoelectrics. 
IEEE Micro 2001; 21(3):30-42. 

17. Glynne-Jones P, Tudor MJ, Beeby SP, White NM. An electromagnetic, vibra-
tion-powered generator for intelligent sensor systems. Sensors and Actuators 
A: Physical 2004; 110(1-3):344-349. 

18. Sterken T, Fiorini P, Baert K, Puers R, Borghs G. An electret-based electro-
static -generator. In: Proceedings of the Twelfth International Conference on 
Transducers, Solid-State Sensors, Actuators and Microsystems 2003; 2:1291-
1294. 

19. Solymar L, Walsh D. Lectures on the electrical properties of materials. Oxford, 
UK: Oxford University Press, 1993. 

20. Mitcheson PD, Green TC, Yeatman EM, Holmes AS. Architectures for vibra-
tion-driven micropower generators. Journal of Microelectromechanical Sys-
tems 2004; 13(3):429-440. 

21. von Buren T, Mitcheson PD, Green TC, Yeatman EM, Holmes AS, Troster G. 
Optimization of inertial micropower generators for human walking motion. 
IEEE Sensors Journal 2005. 

22. Miao P, Mitcheson PD, Holmes AS, Yeatman EM, Green TC, Stark BH. 
MEMS inertial power generators for biomedical applications. In: Proceedings 
of the Symposium on Design, Test, Integration and Packaging of 
MEMS/MOEMS, Montreux 2005; 295-298. 

23. Mitcheson PD, Miao P, Stark BH, Yeatman EM, Holmes AS, Green TC. 
MEMS electrostatic micropower generator for low frequency operation. Sen-
sors and Actuators A: Physical 2004; 115(2-3):523-529. 

24. Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan A, Lang JH. Vi-
bration-to-electric energy conversion. IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems 2001; 9(1):64-76. 

25. PSpice, OrCAD Inc., http://www.orcad.com 
26. Stark BH, Mitcheson PD, Miao P, Green TC, Yeatman EM, Holmes AS. 

Power processing issues for micro-power electrostatic generators. In: Proceed-
ings of the IEEE Thirty-Fifth Annual Power Electronics Specialists Conference 
2004; 6:4156-4162. 

27. Stark BH, Green TC. Comparison of SOI power device structures in power 
converters for high-voltage, low-charge electrostatic microgenerators. IEEE 
Transactions on Electron Devices 2005; 52(7):1640-1648. 



7
Towards Ultra-Low Power

Bio-Inspired Processing 

Leila Shepherd, Timothy G. Constandinou, and Chris Toumazou 

7.1 Introduction 

The natural world is analogue and yet the modern microelectronic world with which 
we interact represents real world data using discrete quantities manipulated by 
logic. In the human space, we are entering a new wave of body-worn biosensor 
technology for medical diagnostics and therapy. This new trend is beginning to see 
the processing interface move back to using continuous quantities which are more 
or less in line with the biological processes. This computational paradigm we label 
“bio-inspired” because of the ability of silicon chip technology to enable the use of 
inherent device physics, allowing us to approach the computational efficiencies of 
biology. From a conceptual viewpoint, this has led to a number of more specific 
morphologies including neuromorphic and retinomorphic processing. These have 
led scientists to model biological systems such as the cochlea and retina and gain 
not only superior computational resource efficiency (to conventional hearing aid or 
camera technology) but also an increased understanding of biological and neuro-
logical processes.  

We propose to apply a similar approach to “chemically-inspired” microelectron-
ics which would lead to portable ultra low-power micro-systems capable of faster 
chemical/biochemical discrimination and interrogation of data, integrated mono-
lithically at the sensor end. In contrast to the digital approach, where each operation 
is performed through a network of devices operated in switched fashion, the physics 
of the elementary device itself, either electrical, chemical or electro-chemical, can 
be exploited to perform the same operation in an analogue way. Therefore both the 
energy per unit computation and silicon real-estate are reduced, resulting in signifi-
cantly increased overall resource efficiency. 

This chapter will first look at the motivation for bio-inspired signal processing 
and discuss the relative merits of analogue and digital signal processing, and the 
need for hybrid architectures. The concept of applying bio-inspired design method-
ologies to Complementary Metal Oxide Semiconductor (CMOS)-based biosensors 
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will then be introduced. Field-Effect Transistor- (FET-) based sensors will be pre-
sented, including a detailed example of the application of analogue processing tech-
niques to these devices. Finally, future directions and applications for biochemi-
cally-inspired design will be discussed. 

7.2 Bio-Inspired Signal Processing 

Although modern microelectronic technologies have surpassed our expectations in 
virtually all areas, there still remains a vast application space of computational 
problems either too challenging or complex to be solved with conventional means. 
These applications often require the transformation of data across the boundary be-
tween the real (analogue) world and the digital world. The problem arises whenever 
a system is sampling and acting on real-world data, for example in recognition or 
identification tasks. Traditional processing techniques find it prohibitively challeng-
ing or at best computationally demanding to identify and process complex struc-
tures and relationships in vast quantities of ill-conditioned data (for instance data 
that is low precision, ambiguous and noisy) [1]. 

Although great progress has been made in hardware processing techniques (e.g.
DSP, FPGA) in both computational load and efficiency, the solution to complex 
recognition tasks still continues to elude us. Furthermore, artificial intelligence, arti-
ficial neural networks and fuzzy logic have yet to provide effective and robust solu-
tions for practical sensing applications. However, biological organisms routinely 
accomplish complex visual tasks such as object recognition and target tracking. For 
example, a common housefly, with a brain the size of a grain of rice, can outper-
form our modern multiple gigahertz processors in real-time obstacle avoidance in 
flight navigation, in addition to countless other perception tasks. Thus fields such as 
neuromorphic engineering have emerged, aiming to provide a design methodology 
for tackling such problems using hybrid, distributed processing architectures based 
on simple primitives. Inspired by biology, modern microelectronic technology is 
progressing one step closer to finding a workable solution to these problems. 

In the context of body-worn sensors for BSN which communicate information 
over a wireless network, it is vital signs and not necessarily raw data that should be 
signalled to the user. There is therefore scope for bio-inspired analogue processing 
to take place local to the sensor, before transmission of data, rather than transmit 
raw data at high accuracy. In employing this approach, the power saving is two-
fold: both in reducing the communication bandwidth/duty cycle and therefore the 
transmit power; and also in excluding the requirement of power-hungry oversam-
pling data converters. Rather than a mere “biosensor” chip, one would have a “bio-
computer” chip with the intelligence to extract important features of the data sensed 
and to discriminate between different scenarios. 



7. Towards Ultra-Low Power Bio-Inspired Sensor Processing    221

7.3 Analogue vs Digital Signal Processing 

7.3.1 Quantised Data/Time vs Continuous Data/Time 

Information exists in a three-dimensional media with data encoded in time, ampli-
tude and space. Various techniques of data representation exist for processing this 
information, with spatial information coded universally by the position of the sensor 
in the three dimensional medium. For example, in electronics, analogue circuits rep-
resent data as continuous voltages and currents, varying both in time and intensity. 
On the other hand, conventional digital electronics use clocks to synchronise activ-
ity – data therefore being represented as discrete voltages quantised in time as well 
as amplitude. Sampled data techniques also exist such as switched-capacitor [2] and 
switched-current [3] that use a clock to sample continuous-varying signals and are 
therefore discrete in time but continuous in amplitude. Such techniques are widely 
used in signal processing of continuous (analogue) signals, for example in imple-
menting filters for over-sampling data converters. 

Exploring this two-dimensional space, i.e., time and amplitude as shown in  
Figure 7.1, for encoding data, a remaining unexploited representation is continuous-
time, discrete-data. This is in fact the principle representation of biology; with spik-
ing neurons conveying no data in the shape or amplitude of the action potential, but 
rather in the timing. This encoding can easily be achieved using asynchronous digi-
tal technology, although it is not widely used in system-level design due to com-
plexity in synthesis. 

Figure 7.1 Classification of the various data representation techniques in 
standard microelectronic technologies.
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7.3.2 Analogue/Digital Data Representation 

A key debate in the low power electronics community is whether analogue or digi-
tal signal processing is more computationally efficient. Much work [1, 4-7] has al-
ready gone into this by considering factors such as Signal-to-Noise Ratio (SNR), 
power consumption, silicon area, channel utilisation and design time.  

The general conclusions from the existing research include [7]: 

(a) Analogue processing can be far more computationally efficient 
than digital signal processing. This is due to the rich mathemati-
cal content in the physics of the devices in comparison to the 
primitive nature of a digital device (a switch). It follows that to 
achieve similar functionality with digital logic, many more de-
vices need to be used – in fact this can be several orders of mag-
nitude more devices. Moreover, at high activities this results in 
significantly higher power consumption. This is because digital 
logic dissipates both due to continuous sub-threshold “leakage” 
current (static power) and during switching (dynamic power), 
whereas analogue devices only have a continuous current supply 
(static power). 

(b) Digital processing is more tolerant of noise and cumulative off-
sets. The continuous nature of analogue signals means they can-
not be restored at each stage as discrete signals can. Conse-
quently, any noise or circuit-introduced offset accumulates 
through cascading and can ultimately deteriorate the signal in 
complex analogue systems. This reduces the accuracy and dy-
namic range of such a system for a given power budget. If device 
geometries are increased and more power is dissipated, analogue 
systems can be made to perform to higher accuracies, however 
the computational efficiency of digital systems then tends to be 
superior. 

(c) Quantifying these benefits, it can be shown that the cost (silicon 
area and power consumption) of analogue computation is expo-
nential with respect to SNR, whereas the cost of digital computa-
tion is linear. In addition, the starting overhead (at low SNR) of 
analogue is low, whereas for digital is high. This sets a trend 
where the benefits of each method can be divided using SNR 
alone (see Figure 7.2 [5, 7]). For lower SNRs, analogue tech-
niques can have many orders of magnitude area and power advan-
tage, whereas for higher precision computation digital techniques 
have the cost advantage. 
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These conclusions are the result of deriving mathematical expressions to quantify 
the computational cost based on the fundamental limits of each technique. Although 
these provide the ultimate theoretical performance of each representation technique, 
they do not consider implementation issues, with circuit design and wafer process-
ing being far from ideal.  

Figure 7.2 The relative cost of computation using analogue or digital signal 
processing. The crossover between analogue and digital having the advantage 
is between 50dB to 72dB SNR (8 to 12 bits resolution) depending on applica-
tion and circuit topology. (See colour insert.)

In the subsequent sections, we shall consider qualitative comparisons of various 
microelectronic representations in performing common computational tasks with 
implementation issues being considered. 

7.3.3 Linear Operations 

The most common mathematical computations are in fact linear operations. These 
include addition, subtraction, multiplication, and division, etc. Implementing these 
computations in different ways can prove beneficial. For example, to add two cur-
rents, only a single wire is needed (by Kirchhoff’s Current Law), whereas an 8-bit 
digital implementation would require eight full-adder stages, comprising a total of 
at least 228 transistors. Similarly, a multiplication can be achieved using a Gilbert 
(translinear) multiplier circuit [8] employing only eight transistors biased in the 
“sub-threshold” or “weak inversion” region of operation. Here the equivalent digital 
solution would be an 8-bit array multiplier requiring an excess of over 2000 transis-
tors. In these examples, silicon area can be saved using analogue techniques, how-
ever as always in electronic design, the various trade-offs need to be considered. A 
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qualitative comparison of the most popular techniques used for linear arithmetic 
computation is illustrated in Table 7.1. 

For these comparisons, sampled data techniques have been combined with their 
respective continuous-time counterparts as these are both based on the same under-
lying circuit theory. To substantiate this, Furth et al [6] have shown these continu-
ous-time and sampled-data techniques to follow similar SNR-to-power-
consumption relationships. 

Table 7.1 A qualitative comparison of linear computations implemented using different sig-
nal representations. 

Signal Representation Topology Silicon Area Power Accuracy Noise Speed Ref. 

Addition, Subtraction, Summation 

Current-mode analogue1 current addition (KCL) best best good excellent good [9] 
Voltage-mode analogue2 charge domain (switched-cap) good good good excellent good [10] 

Digital3 parallel counter, ripple adder fair good excellent excellent excellent [11] 

Multiplication, Division 

Current-mode analogue Gilbert multiplier excellent excellent excellent good fair [8] 
Voltage-mode analogue flipped voltage followers good good good good fair [12] 

Digital array, tree multiplier poor fair excellent excellent excellent [13] 

Scaling 

Current-mode analogue scaled current mirror excellent excellent good fair good - 
Voltage-mode analogue operational amplifier good fair good good good - 

Digital barrel shift and accumulate fair good excellent excellent excellent [14] 

1 Provide maximum resource efficiency (area and power) [7]; 2 Provide good all-round performance; 3 Provide highest speed operation 
and precision [7].

7.3.4 Non-Linear Operations 

In most complex processing tasks, the underlying computation tends to be non-
linear. This may comprise of an array or bank of linear functions to achieve the 
overall non-linear behaviour. A qualitative comparison, as previously presented for 
linear operations, has been formulated for selected common non-linear functions, 
shown in Table 7.2. 

7.3.5 Hybrid System Organisation 

The ultimate goal of using a hybrid approach is to exploit different representation 
strategies throughout a system – ideally to achieve optimum performance for a 
given processing task. Most modern applications typically require both analogue 
and digital techniques to work alongside one another as the bare minimum. Since 
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Table 7.2 A qualitative comparison of non-linear computations implemented using different 
signal representation techniques. 

Signal Representation Topology Silicon Area Power Accuracy Noise Speed Ref. 

Comparison, Thesholding1

Current-mode analogue current comparator excellent excellent good fair fair [9] 
Voltage-mode analogue operational amplifier good good good good good - 

Digital subtractor fair fair good excellent excellent [14] 

Exponential, Logarithm, Square, Root2

Current-mode analogue translinear circuits excellent excellent good good fair [15] 
Voltage-mode analogue non-linear V to I good fair good good fair [16] 

Digital root/division algorithm fair fair excellent excellent good [17] 

Filtering, Integration, Differentiation, Fourier Transform3

Current-mode analogue log domain good excellent good excellent excellent [18] 
Voltage-mode analogue charge domain (switched cap) good excellent fair good good [10] 

Digital IIR/FIR filters, FFT poor fair good excellent good [19] 

1The direct comparison of continuous signals makes analogue comparators the most easily implementable, whereas digital comparison
techniques are typically implemented using subtraction driven combinational logic. 

2Analogue realisations are based on translinear techniques or exploitation of non-linear component response, whereas digital implementa-
tions require either ROM-based lookup tables or synthesis of custom arithmetic-logic-unit (ALU) type hardware. 

3Digital implementation provides better reconfigurability, stability to drift/temperature and low frequency operation.

the real world is analogue, any system requiring a sensor interface requires ana-
logue electronics. On the other hand, as most control systems and communication 
protocols are digital, any system requiring external interface capability requires 
digital electronics. 

This defines a minimum requirement of one data converter. Therefore, in order 
to best utilise resources, it would be best to use this data conversion to our advan-
tage by using this as the main conversion stage within a system. By using hybrid 
processing strategies and shifting the data conversion interface, the required con-
version accuracy can be relaxed to specifications that lend themselves to micro-
power techniques. Using previously mentioned signal representation techniques, 
there exist several architectures that fulfil these criteria as illustrated in Figure 7.3. 

7.4 CMOS-Based Biosensors 

CMOS is the dominant semiconductor technology for fabrication of modern micro-
electronic components such as microprocessors, memories and Application Specific 
Integrated Circuits (ASICs) on a silicon substrate through a defined sequence of 
material deposition, doping, lithography and etching [20]. CMOS technology has
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Figure 7.3 Hybrid processing architectures with a single data conversion 
stage: (a) conventional analogue front-end with digital processor and output, 
(b) hybrid analogue/digital processing platform with digital output, and (c)
hybrid analogue and sampled data processing platform with digital output. 

transformed the electronics industry with a seemingly undiminishing† ability to in-
tegrate more and more uniform devices of ever-decreasing dimensions onto a single 
silicon wafer. It is no wonder then that a goal of recent miniaturisation trends in 
electrochemical biosensing has been the fabrication of electrochemical “microsen-
sors” on a CMOS substrate, providing not only low-cost batch fabrication and re-
producible sensor characteristics, but also reduced power consumption and rapid 
sensor response due to reduced device dimensions.  

In addition to meeting these key criteria, CMOS-based chemical sensors are 
amenable to monolithic integration of interface circuitry and thus to the use of the 
bio-inspired hybrid processing architectures described herein which can potentially 
extract critical information from noisy signals in an adaptive, intelligent manner.  

A key bone of contention is whether or not sensing and processing functions 
should be combined when this limits one’s choice of sensors and materials and can 
also introduce expensive sensor-specific process steps to standard commercial 
CMOS fabrication. Of the integrated sensing and electronic functions published so

                                                          
† Of course, Moore’s 1965 Law predicting the number of transistors per square inch could double every 
two years (actually more like 18 months) is gradually starting to reach its limits. The latest Intel ‘Ita-
nium’ processor family uses a minimum feature size of 90nm and has 1.72 billion transistors.
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far such as [21] and [22], none have been shown offer higher SNRs than separate 
sensors and interface electronics, leading to observations by some [23, 24] that in-
tegration is not necessarily the most appropriate goal given that the lifetime of sen-
sors can be short. Keeping sensor and processing circuitry separate allows reusable 
electronic modules and optimised fabrication process for both electronics and sen-
sor. However, the norm for other types of sensors is that integration traditionally re-
sults in better SNR. Most high spec sensors, e.g., MEMS microphones, pressure 
sensors, and even image sensors, have integrated active gain element to massively 
improve SNR. 

For small systems which do not require adaptive or intelligent discrimination, 
disposable off-chip sensors and reusable electronic modules may well be the most 
cost effective and high performance solution. However for more complex applica-
tions, involving array processing on an array of homo- or heterogeneous sensors, 
such as bio-inspired learning, adaptivity, feature extraction or redundancy, then 
large scale integration of sensors and electronic devices is paramount and CMOS 
technology is the current state-of-the-art for hybrid architectures.  

CMOS-based chemical sensors and biosensors comprise a physical transducer 
and a chemical or biological recognition layer. The reversible change in a physico-
chemical property of the recognition layer (such as mass, volume, optical absorp-
tion spectrum, conductivity, temperature) upon interaction with a chemical or bio-
logical target is converted by a transducer into an electrical signal such as 
frequency, current or voltage. Electrochemical sensors are a class of sensors with 
fast response times based on ionic charge transfer between the recognition layer and 
the target analyte causing changes in electrical potential or conductivity. One of the 
most popular types of CMOS-based electrochemical sensor is the family of FET-
based devices, whose lowest common denominator, the Ion-Sensitive Field Effect 
Transistor (ISFET), will be discussed in more detail in this section.  

7.4.1 Ion-Sensitive Field-Effect Transistor (ISFET) 

Research into FET-based biochemical sensing began in 1970, when Piet Bergveld 
proposed a MOSFET without a gate metallisation as an ISFET [25] for measuring 
ionic flux around a neuron. Accumulation of charge at the exposed insulator (i.e.,
oxide) surface, is related to the activity (concentration†) of ions in the sample solu-
tion, and modulates the threshold voltage of the transistor, causing shifts in the cur-
rent-voltage (I-V) characteristic of the ISFET (Figure 7.4). Being a potentiometric 
sensor, a reference electrode (such as silver/silver chloride) is required so that the 
phase boundary potential formed at the oxide-electrolyte interface can be measured 
with respect to a fixed boundary potential in the bulk of the solution. In transistor 
terms the reference electrode acts as a remote gate which is capacitively coupled 
across the electrolyte to the insulator surface. 

                                                          
† The term “activity” ai denotes the effective (active) concentration of the ion, i.e., those ions not en-
gaged in ionic interactions with oppositely charged ions, and is related to concentration ci by ai = fici
where fi is the activity coefficient. In dilute solutions, fi approaches unity and ai  ci.
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Figure 7.4 pH-ISFET transconductance characteristics. 

Figure 7.5 Standard pH-ISFET. 

In the most common ISFET implementation, the silicon dioxide layer is re-
placed with a double layer insulator which has better pH-sensitivity and stability to 
form a pH-ISFET, sensitive primarily to hydrogen ions (Figure 7.5). Examples of 
the upper layer of these double insulator structures are silicon nitride, aluminium 
oxide and tantalum oxide. Though an ISFET by definition is a FET without a gate, 
a goal of recent research has been to fabricate FET-based devices with ion sensitiv-
ity using a standard commercial CMOS process. These CMOS-based ISFETs cir-
cumvent the fact that the CMOS process requires a polysilicon gate for self-
alignment of the source and drain diffusions by using the silicon nitride passivation 
layer on top of the polysilicon gate as the sensing membrane as shown in Figure 7.6 
[21]. Charge accumulation on the passivation layer (typically either silicon dioxide 
or silicon nitride) is capacitively coupled to the ohmic multiconductor “floating 
gate” structure of metal layers and polysilicon beneath, thus influencing the inver-
sion within the semiconductor channel and therefore device drain-source current. 
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Figure 7.6 A schematic illustration of CMOS ISFET. 

7.4.2 ISFET-Based Biosensors 

Through modification of the sensing membrane, and/or the addition of further lay-
ers of sensitive materials which interact with target species to form ions, ISFETs 
can be used to sense ions other than hydrogen, as well as gases, antigens and me-
tabolites such as urea and glucose. 

7.4.2.1 ChemFET 

Through the deposition of various ionophores (ion-selective channels) on top of the 
insulator sensing membrane, ChemFET sensors for key ions such as sodium, potas-
sium and calcium can be created based on the same principle [26-28]. 

7.4.2.2 GasFET 

Gas-sensitive FETs or “GasFETs” can be made by taking an ISFET and surround-
ing it by a thin film of intermediate electrolyte solution enclosed by a gas-
permeable membrane. This is often achieved by localising the electrolyte solution 
to the ISFET surface using a hydrogel, and covering this with a gas-permeable 
polyimide layer. Thus the gas of interest diffuses through the membrane and under-
goes a chemical reaction with the electrolyte, consuming or forming an ion to be 
detected by the underlying ISFET. The local activity of this ion is proportional to 
the amount of gas dissolved in the sample, and thus the ISFET response is directly 
related to the concentration of sample. One example of this is the Severinghaus 
method for the detection of carbon dioxide [29-31]. 

7.4.2.3 EnFET 

Enzyme-FETs or EnFETs use the specific binding capabilities of enzymes as well 
as their biocatalytic activity to create FET-based biosensors. Enzymatic action of an 
enzyme on its substrate gives rise to the production or consumption of ions which 
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can be detected by an underlying ISFET or ChemFET if the enzyme is immobilised 
sufficiently close to its sensing membrane. 

The first EnFET was proposed by Janata and Moss in 1976 [32], and was real-
ised in 1980 with a penicillin-sensitive biosensor using the enzyme penicillinase to 
catalyse the hydrolysis of penicillin – a reaction which produces hydrogen ions 
[33]. Since then, a wide range of EnFETs have been reported for the detection of 
glucose, sucrose, maltose, ethanol, lactose, urea and creatinine among others. Ref-
erences to these reports can be found in the review by Schoning and Poghossian  
[34] and one of the most active research groups in the field of EnFET devices based 
between Ukraine and the Ecole Centrale de Lyon in France review their own work 
of the past decade in [35]. 

EnFET construction involves the attachment of an enzyme or an enzyme-
containing layer onto the inorganic gate insulator of the underlying ISFET or 
ChemFET sensor – a research topic which has generated much investigation. Sev-
eral methods and protocols have been attempted with varying degrees of success, 
including physical or chemical adsorption, entrapment within polymeric matrices, 
covalent binding, cross-linking by bifunctional agents such as glutaraldehyde and 
mixed physicochemical methods. The simplest and most frequently used methods 
are the drop-on technique and the spin-coating or dip-coating of a mounted sensor 
chip into an enzyme solution [34]. To improve often poor adhesion of the enzyme 
layer, prior surface silinisation of the inorganic gate insulator is often performed. 

Specific difficulties associated with EnFETs other than problems of enzyme ad-
hesion are their nonlinear and limited dynamic range. Also, the buffer capacity of 
the sample solution, which is itself pH-dependent, will often counteract the ion-
generating or ion-depletion reaction catalysed by the enzyme in a non-linear man-
ner. This however is not a major concern if the enzyme layer is immobilised close 
enough to the pH-sensing gate. Another source of non-linearity is the pH-
dependency of enzyme kinetics, although this is well modelled and therefore has 
the potential to be overcome through intelligent local processing. 

7.4.3 Towards Biochemically Inspired Processing with ISFETs 

Despite some difficulties in terms of reliability and reproducibility, the ISFET and 
its derivatives have been by far the most popular miniaturised potentiometric sensor 
over recent decades, and the number of ISFET-related publications between 1999 
and 2005 approaches 400. Current research directions in this field are the optimisa-
tion of the CMOS-based fabrication process, development of on-chip reference 
electrodes, drift and temperature compensation techniques, cancellation of interfer-
ence from other ions and modification of the sensing membrane to sense different 
ions, metabolites and antigens. 

Research thus far has not however strayed from traditional interface techniques 
of instrumentation amplifiers and op-amps – the main innovation being that these 
are now being integrated on-chip. Yet ISFETs, being transistor-based, give plenty 
of scope for exploration of existing knowledge of device physics and circuit tech-
niques that we are familiar with from MOSFET design summarised in Tables 7.1 
and 7.2 and their application to devices with a chemical input. 
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7.4.3.1 Weak Inversion Operation 

A first step towards exploiting device characteristics of ISFET-based sensors has 
been made by operating them in the ultra low power current-mode analogue region 
known as “weak inversion” or “subthreshold”, where in digital terms the transistor 
would be considered “switched off”. The current-mode analogue approach [9] al-
lows operations such as addition, subtraction, multiplication, division, scaling, 
thresholding, power law operations and filtering to be performed at a fraction of the 
silicon area and power associated with digital processing, as discussed in Section 
7.3. 

In the weak inversion region, MOSFET-based transistors are characterised by 
diffusion of electrons across the channel, rather than drift across an electric field 
when the device is “switched on” above a given threshold voltage. This operating 
region is characterised by current levels typically from 1pA to 10nA, and generally 
powered by low (~1V) power supply voltages, leading readily to the realisation of 
analogue micropowered designs. Boltzmann diffusion of electrons in weakly-
inverted MOSFET devices dictates an exponential voltage to current relationship: 
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where ID is the drain current, I0 is the pre-exponential multiplier, W and L are gate 
width and length, VGS is the gate-source voltage, n is the subthreshold slope factor 
and UT = kT/q is the thermal voltage. 

When an ISFET is operated in weak inversion [36], this equation is modified to 
include the term Vchem which accounts for the linear modulation of ISFET threshold 
voltage by the pH of the solution: 
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Vchem groups various chemical potentials between the reference electrode and the 
ISFET surface insulator (e.g. Si3N4) such as liquid junction potentials and work 
functions and to a first approximation is linearly proportional to pH with a slightly 
sub-Nernstian sensitivity of 55mV/pH at 298K. This is primarily due to the Boltz-
mann distribution of hydrogen ions in the electrolyte’s diffuse layer, which gives 
rise to a potential across the electrolyte that varies logarithmically with hydrogen 
ion concentration and hence linearly with pH. 

The dependence of Vchem on pH is modelled using a combination of the site-
binding theory and the Gouy-Chapman-Stern double-layer theory to model charge 
distribution across the electrolyte. The ISFET is based on a MOSFET with a remote 
gate (reference electrode, G) exposing a chemically-sensitive insulator (G’) to an 
electrolyte (Figure 7.7) and can be represented by a behavioural macromodel such 
as that of Martinoia et al [37] in which Vchem is given by: 

2.303chem TV U pHγ α= + (7.3)
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Figure 7.7 ISFET behavioural macromodel. 

where γ is a grouping of pH-independent chemical potentials and  varies between 
0 and 1 and relates ISFET sensitivity S dV dpH=  to the ideal Nernstian sensitiv-
ity SN = 2.303UT.

Substituting the sub-Nernstian logarithmic property of the electrolyte (7.3) into 
the Boltzmann exponential distribution of the ISFET (7.2): 
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where ( )expchem TK nUγ= − is a pH-independent constant. The operation of the 
ISFET in weak inversion thus generates a power-law relation between drain current 
and ion concentration for a fixed gate-source voltage of the form 2][1

k
D ionkI =  as 

in (7.4). This is because the exponential current-voltage characteristic of the transis-
tor in weak inversion is countered by the logarithmic voltage-ionic concentration of 
the Nernst equation. It is the effective cancellation of the same physical phenome-
non – diffusion: one ionic, the other electronic. 

The advantage of operating in this region is two-fold: 

• The lower current bias and voltage levels required to operate the 
transistor in its weak inversion region results in significantly re-
duced supply power consumption.  

• The exponential transconductance characteristic means that these 
devices can be used as “translinear elements” in the synthesis of 
static and dynamic translinear circuits, the current-mode analogue 
design methodology for realising mathematical operations such as 
power law manipulations, multiplications, correlations and filter-
ing. 

7.4.3.2 Translinear Design Methodology 

The Translinear Principle was introduced by Barry Gilbert for bipolar transistors in 
1975 [15], and is one of the most important circuit theory contributions in the 



7. Towards Ultra-Low Power Bio-Inspired Sensor Processing    233

analysis and synthesis of nonlinear circuits. Due to their exponential characteristics, 
the principle has been extended to MOS transistors in weak inversion [38] for the 
realization of ultra-low power signal processing circuitry.  

The principle has recently been extended to the operation of the ISFET in the 
weak inversion region to form a Biochemical Translinear Principle [39]. The sim-
ple “translinear loop” shown in Figure 7.8 has the property that the product of the 
clockwise currents is equal to the product of the anticlockwise currents, scaled by 
the ionic concentration ratio of ion B over ion A to a known power: 
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Figure 7.8 A translinear loop for which the ratio of clockwise current densi-
ties to anticlockwise current densities is proportional to the concentration ra-
tio of ion B to ion A (to a known power). 

This Biochemical Translinear Principle can be manipulated to perform many 
mathematical operations on biochemical signals.  It is immediately apparent from 
the simple translinear loop shown in Figure 7.8 that if the enzymes urease and 
creatinase were bound to ISFETs 2 and 3 respectively, then this circuit would calcu-
late in real-time the urea to creatinine concentration ratio to a known power with 
just four transistors, with no need for digital processing.  

A second, purely electronic translinear loop could then be used to raise this con-
centration ratio to the power of 1.  Plasma urea to creatinine ratio is a key bio-
marker in the signalling of renal failure and gastrointestinal bleeding, and is an ex-
ample of a useful parameter in the context of real-time monitoring for BSNs.  

 As well as real-time concentration ratio calculations, translinear circuits are 
ideally suited to power law manipulations, be it exponents or roots. The circuit in 
Figure 7.9 performs a squaring function; designed to linearise (7.4). Linear sensor 
output with respect to concentration of species X as opposed to pX, which is loga-
rithmic, is important for subsequent closed-loop feedback applications on-chip, 
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such as drug or hormone delivery, as the control problem is significantly reduced if 
the sensor system is linear with respect to the real-world biochemical parameter. 
This circuit shows how easily the sensor output can be linearised in the current-
mode analogue domain using translinear circuits. With the inclusion of capacitors 
into such circuits, log-domain and dynamic translinear circuits can be synthesised, 
which is useful in performing frequency-dependent filtering functions on sensed 
biochemical signals. 

M1

Ib1

Ixis

pX

X2

M4

M3 M6

M5

Ib2

Vref

Iout

Vdd

A

B

Figure 7.9 Iout is linearly proportional to the concentration of the ion species 
detected by ISFET X2 [39].

Of the operations listed in Tables 7.1 and 7.2, only two (division and squaring) have 
been demonstrated using the current-mode analogue approach with weak inversion 
devices. Of the remaining operations, some are trivial using this approach (e.g. ad-
dition), but there remains much to be explored in terms of applying some of the 
analogue techniques summarised in these tables, both current- and voltage-mode. 
For fully optimised, bio-inspired systems, hybrid architectures featuring the interac-
tion between analogue and digital processing should be further investigated. 

7.5 Applications of Ultra-Low Power Signal Processing  
for BSN 

In a BSN with limited bandwidth and power constraints, the conventional method 
of data acquisition and analogue-to-digital data conversion with signal processing 
taking place after transmission is not optimal. BSNs are a prime candidate for bio-
inspired local processing to take place at the sensor front-end before transmission. 
This processing could include spatial and temporal averaging for drift and failure 
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tolerance, but also trendspotting and adaptivity. The key principle of bio-inspired 
engineering in this application area is that biology does not often deal in absolute 
values, but in relative changes from a given norm. 

Ultra-low power signal processing is not limited to ISFET-based devices, and 
design methodologies such as translinear circuit synthesis do not need to be applied 
directly to the sensor as they were in Section 7.4.3 – indeed, this can only apply to 
CMOS devices with exponential transconductance properties such as diodes or 
transistors in weak inversion. The analogue signal processing design methodologies 
should thus be applied as close to the sensor front-end as possible, thereby building 
intelligence and adaptivity into the sensor. One example lies in predictive array 
processing for robustness of sensor output by compensating sensor drift, tempera-
ture dependence, sensor failure and interference. Integrated electronics can adap-
tively change the bias and gain of each sensor in an array individually. 

Another direction for on-chip intelligence is the implementation of the Hilbert 
transform for voltammetric sensors as mentioned in Chapter 2 as an analogue filter 
bank rather than off-chip digital processing which would give far-reaching instanta-
neous discrimination capabilities. In optics, interest is developing in the field of in-
tegrated optics, which is leading to the development of small chip-sized UV-vis and 
near-IR spectrometers [40]. A future direction could be the application of expertise 
from the field of bio-inspired vision chips using hybrid, distributed processing tech-
niques in an embedded photodiode array to facilitate feature extraction [41-43]. 
Similarly, in ECG sensors, micropower hybrid implementation of low/band pass fil-
ters, derivative and template matching functions at the electrode input can extract 
features such as QRS-wave (heartbeat) complex and detect abnormalities including 
arrhythmias without the need to continually stream the raw ECG data. 

Further scope for bio-inspired design lies in adaptive therapeutics based on neu-
ral and metabolic cell modelling. Instead of providing feedback to biological sys-
tems using traditional multivariate analysis or PID control, one can use electronic 
models of excitable cells. It has already been shown that neural models such as the 
Hodgkin and Huxley model can be realised in silicon with weak inversion analogue 
devices [44], and this principle can be extended to metabolic cells in the body such 
as pancreatic beta cells, whose activity is dominated by action potentials generated 
by cellular sodium, potassium and calcium ion concentrations. Fully integrated 
CMOS sensors and processing circuitry will have the ability to measure intra- and 
extra-cellular ion concentration and to then generate the appropriate signalling to 
neighbouring cells via electrodes or to a biomimetic hormone delivery unit for ex-
ample. In addition to neural bridge applications, this type of architecture can be use-
ful in therapeutic endocrine control systems for insulin delivery to diabetic patients. 

In summary, the biomedical applications which could benefit from the union of 
CMOS-based sensors with expertise in optimised hybrid electronics are unlimited if 
one dares to leave the domain of traditional interface techniques. Two current-mode 
analogue processing implementations have been proposed for CMOS ISFETs and 
their derivatives, but there remains an extensive toolkit of circuit techniques and 
mathematical operations to be explored with biosensors in mind, as well as a pleth-
ora of CMOS biosensors each with their own signal processing requirements. These 
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biologically-driven intelligent biochemical circuits hold the key to the low power in
situ diagnostics and therapeutics in future BSN designs.   
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8
Multi-Sensor Fusion 

Guang-Zhong Yang and Xiaopeng Hu  

8.1 Introduction 

In previous chapters, we have discussed the issues concerning hardware, 
communication and network topologies for the practical deployment of Body 
Sensor Networks (BSNs). The pursuit of low power miniaturised distributed sensing 
under the patient’s natural physiological conditions has also imposed significant 
challenges on integrating information from what is often heterogeneous, 
incomplete, and error-prone sensor data. For BSN, the nature of errors can be 
attributed to a number of sources, but motion artefacts, the inherent limitations and 
possible malfunctions of the sensors, and communication errors are the main causes 
of concern. In practice, it is desirable to rely on sensors with redundant or 
complementary data to maximise the information content and reduce both 
systematic and random errors. This, in essence, is the main drive for multi-sensor 
fusion, which is concerned with the synergistic use of multiple sources of 
information.  

In cardiac sensing, for example, both ECG and haemodynamic signals, such as 
the impedance cardiograph or blood pressure, have mutually correlated information 
of the heart due to the physiological coupling of the mechanical and electrical 
functions. In situations where the ECG signal is degraded, either due to poor 
electrode connection or patient movement, joint analysis of additional sensors such 
as the ventricular pressure, can ensure sustained cardiac rhythm monitoring. This 
resolves some of the intrinsic ambiguities involved in rhythm disturbance when it is 
assessed by ECG alone [1]. Whilst the use of multiple identical sensors for error 
minimisation is relatively intuitive to understand, the reliance on different sensors 
in terms of both sensing type and location will require the use of general principles 
of pattern recognition and machine learning. In practice, the use of multiple sensors 
with information fusion has the following main advantages compared to single 
sensor systems [2]:  

• Improved Signal-to-Noise Ratio (SNR) 
• Enhanced robustness and reliability in the event of sensor failure 
• Extended parameter coverage  
• Integration of independent features and prior knowledge 
• Increased dimensionality of the measurement 
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• Improved resolution, precision, confidence, and hypothesis 
discrimination 

• Reduced uncertainty  

The origin of sensor fusion can be dated back to 1970s when it was studied 
extensively for robotics and defence research. To address some of the main issues 
in data fusion and unify the terminology and procedures involved, a Data Fusion 
Sub-panel to the Joint Directors of Laboratories (JDL) Technical Panel for C3 
(command, control, communications) was established by the US Department of 
Defence in 1986. Under the JDL data fusion framework, five levels of processing 
have been defined, which include Sub-Object Data Association and Estimation 
(L0), Object Refinement (L1), Situation Refinement (L2), Significance Estimation 
or Threat Refinement (L3), and Process Refinement (L4) [3, 4]. The JDL also gave 
a definition of data fusion, which was subsequently refined as a multilevel, 
multifaceted process dealing with the automatic detection, association, correlation, 
estimation, and combination of data and information from single or multiple 
sources [5]. Although the JDL framework was mainly developed with a strong 
military emphasis in mind, some of the basic principles provided are still applicable 
to BSN.    

8.1.1 Information Interaction  

In general, the nature of information interaction involved in sensor fusion can be 
classified as competitive, complementary, and cooperative fusion [6-9]. In 
competitive fusion, each sensor provides equivalent information about the process 
being monitored. It typically involves the handling of redundant, but sometimes 
inconsistent, measurements. The nature of competitive sensing means that it is 
ideally suited for in situ multi-sensor calibration, consistency maximisation, and 
fault tolerant sensing.  

In complementary fusion, on the other hand, sensors do not depend on each 
other directly as each sensor captures different aspects of the physical process. The 
measured information is merged to form a more complete picture of the 
phenomenon. The example given above on combined ECG and haemodynamic 
sensing is a typical case of complementary fusion. Another form of complementary 
fusion is the use of a predefined physical model to combine sensor readings to 
collectively estimate a higher level of measurement indices. For example, arterial 
compliance, which is related to aging and diseases such as arteriosclerosis, can be 
quantified from a pressure-volume relationship by measuring the ability of a vessel 
to distend with increasing transmural pressure.  

In cooperative fusion, sensors work together to provide information that is not 
obtainable by any of the sensors alone. In stereovision, for example, the measured 
feature disparity in the image pairs permits the estimation of the depth and shape of 
the object. Due to the compounding effect, the accuracy and reliability of 
cooperative fusion is sensitive to inaccuracies in all simple sensor components used. 
For BSN, the main objective of sensor fusion is to combine information from 
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different sensors to capture data with improved reliability, precision, fault tolerance, 
and inferencing power to a degree that is beyond the capacity of each sensor.  

Figure 8.1 Schematic diagrams showing three different fusion architectures 
at data, feature and decision levels (adapted from DL Hall [3]).
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8.1.2 Levels of Processing 

From the data processing model point of view, sensor fusion can also be grouped 
into three different levels of fusion as shown in Figure 8.1, i.e., direct data fusion,
feature-level fusion, and decision-level fusion [3].   

If the sensors are measuring the same physical parameter with the data derived 
being commensurate, raw sensor data can be directly combined. Otherwise, the data 
needs to be fused at the feature or decision level. For feature-level fusion, features 
are first extracted from the sensor data to form multi-dimensional feature vectors so 
that general pattern recognition methods can be applied. For decision-level fusion, 
however, the information used has already been abstracted to a certain level through 
preliminary sensor or feature level processing such that high-level decision can be 
made. Popular techniques used for this level of fusion include classical inference, 
Bayesian inference, and Dempster-Shafer’s method. Decision level fusion is also an 
ideal place to incorporate a priori knowledge and high-level domain specific 
information. 

In terms of data communication, the higher levels of data abstraction can have a 
positive impact on the bandwidth requirement. In a distributed sensor network, 
feature-level and decision-level fusion allows effective deployment of 
heterogeneous, independent sensor clusters.  

8.2 Direct Data Fusion 

In general, sensor replication poses the problem of data integration. For multi-
sensor data fusion, it is usually assumed that communication, storage, and 
processing systems are reliable and the focus is on fusion algorithms that can 
integrate data from either homogeneous or heterogeneous sources [10]. Direct data 
fusion is useful for sensor arrays which, unlike the traditional sensor designs, are 
typically based on the use of poor selective sensors. With sensor fusion, it is 
possible to overcome some of the inherent limitations of each single element of the 
ensemble. Another use of direct data fusion for sensor networks is self-calibration. 
Traditionally, calibration is done during production time and recalibration is 
necessary periodically for most sensors as factors such as aging, thermal drift, 
decay and damage can have a detrimental effect on the accuracy of the readings. 
Frequent recalibration of large scale sensor networks, however, can be problematic 
in pervasive sensing environments due to the number of sensors involved. 
Furthermore, MEMS-based sensors such as those used as accelerometers are 
usually not calibrated after production and the sensors can have a sensitivity and 
offset bias on each axis. To illustrate the role of direct data fusion, we will outline 
in this section two examples of direct data fusion for optimal averaging with outlier 
detection for sensor arrays, and source separation of mixed signals from a set of 
networked sensors.
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8.2.1 Optimal Averaging for Sensor Arrays 

In its most basic form, sensor fusion can be implemented as a simple average of all 
sensor readings. This approach, however, is not robust as any error in the individual 
measurements is included in the final estimate. As a result, the final signal can 
deviate significantly from its true value. Weighted averaging reduces the 
contribution from the worst sensors but do not solve the robustness issue as 
erroneous sensor measurements are still included in the final estimate. Numerically, 
the errors involved in sensors can be attributed to systematic errors or so called 
bias, which is an offset of the mean amplitude of the sensor readings from the true 
value. This bias can be time dependent and affected by external factors such as 
thermal and chemical drift. Another source of error is random error or noise. This 
random component can be attributed to hardware noise or other unpredictable 
transient signals that cause random fluctuations of the readings. In sensor fusion, 
the statistical distribution of the random error can be modelled with a priori 
knowledge. In the absence of such information, Gaussian distributions are 
commonly adopted.   

By taking into account scaling, bias and random noise errors, the output ( )ix t
of the ith sensor in relation to the original signal ( )0s t can be represented as: 

( ) ( )( ) ( ) ( ) ( )01= + + +i i i ix t t s t b t n tε (8.1)

where ( )in t is measurement noise, and ( )i tε and ( )ib t are the scale and offset 
biases, respectively. Given a set of N noisy measurements, the recovery of the true 
signal for the problem formulated above is ill-posed. It is only solvable with regard 
to certain constraints or specific objective functions. For example, Unser and Eden 
[11] have shown that the optimal weighting coefficients for N noisy channels can 
be determined by maximising a quadratic SNR defined by: 

( )2
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K

i
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s s
N

N

=

=

−
=

−s s
(8.2)

where the temporal signal associated with each sensor is discretised as a K-
dimensional vector, i.e., ix and is represent the measured and the source signal for 
sensor i, respectively, and 

[ ]1, , T
Ks s=s (8.3)

which represents the ensemble average of ( ) 1, ,=si i N . In the above equations, 
T denotes vector transpose, and 2 is the square norm of a vector. In (8.2), 

is represents the cross channel average for sample i, and s is the mean signal given 
by: 
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i

s s
M =

= (8.4)

The above SNR in fact represents the ratio between the rescaled signal and residual 
noise energies. In (8.2), the relationship between is and ix is given by: 

i i i iw b= −s x l (8.5)

where l is a K-dimensional vector of all 1’s, and ( )1, ,=iw i N are the optimal 
coefficients to be sought. By referring to (8.1) and ignoring ni, it can be seen that 
the ideal value of ( ) 1 is 1 −+i iw ε .

It can be proved that the optimal estimate of the scale and offset biases shown in 
(8.1) can be derived independently. For any given coefficient 1, , T

Nw w=w , the 
optimal value of ib that maximises (8.2) is given by: 

( )1, ,= =i ib x i N (8.6)

i.e., the average of the measured signal values. Furthermore, it can also be shown 
that the optimal weighting coefficient 1, , T

Nw w=w is given by the first 
generalised eigenvector of the characteristic equation 

R Dβ=w w (8.7)

where R  ijr= is the N N× centred inner product matrix defined by 

T
ij i j i jr Kx x= −x x (8.8)

and D is the corresponding diagonal matrix 

( )
          

D  with 
0,  

ii ii
ij

ij

d r
d

d i j
=

=
= ≠

(8.9)

To demonstrate the effect of the above optimum averaging scheme, Figure 8.2 
shows an example source signal and the corresponding sampled data by five array 
sensors, each with different scale and offset biases. From this figure, it is evident 
that signals from channels 1 and 3 are severely corrupted. Direct averaging without 
discriminating the quality of the data can lead to significant errors. Figure 8.3 gives 
a comparison of the result with and without the use of the maximum SNR criterion 
described. It is also interesting to see that after normalising each signal trace with 

2
i ix−x l , the associated weights for each channel is 0.12, 0.26, 0.10, 0.26, and 
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0.26 respectively, i.e., channels 1 and 3 are detected as outliers, thus suggesting the 
potential use of the method for channel anomaly detection.  

Figure 8.2 An example source signal (top) sampled by an array of five 
sensors with different scale and offset biases. Each channel is affected by 
sensor noise but with channels 1 and 3 being most significant.
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Figure 8.3 The recovered signal with optimal (a) and direct (b) averaging.

8.2.2  Source Recovery 

In the previous section, we have assumed that the measured signals are directly at 
source. For many BSN applications, however, this is not possible. For example, in 
the case of EEG (Electroencephalography) and MEG (Magnetoencephalography)
measurements, signals associated with the spontaneous activity or evoked potentials 
are mixed, and each sensor measures a different combination of the source signals. 
In this case, source separation of mixed signals from a set of sensors is required, 
and this aspect of direct data fusion has attracted a significant amount of interest in 
recent years.  

The aim of source separation of blindly mixed signals is to recover unobserved 
signals or sources from temporally and spatially correlated observations. Generally, 
a Blind Source Separation (BSS) problem can be formulated as finding an inverse 
system that recovers the original signal sources given an observed number of sensor 
signals ( ) ( ) ( )1 , ,=x

T
Nt x t x t [12]. The mathematical formulation of BSS is 

typically given in the form of a statistical estimation problem. This model is 
generative, which means that it describes how the observed data is generated by a 
process of mixing the source components.  

By assuming ( ) ( ) ( )1 , ,=s
T

Mt s t s t as the unknown signal sources mixed 
according to a vector valued non-linear function f , the observations ( )x t  can be 
represented as a non-linear mixture of ( )ts and additive noise ( )n t , i.e.,

( ) ( )( ) ( )t t t= +x f s n (8.10)

In most applications, it is desirable to separate the original source signals, as well as 
to provide information about their spatio-temporal distributions. Ideally, BSS 
algorithms should make minimal assumptions about the underlying process and the 
nature of the sources. In practice, however, source separation algorithms range from 
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almost blind to highly application specific, where certain characteristics about the 
sources are available.  

For linear mixing models, Independent Component Analysis (ICA) is a valuable 
tool for BSS and it generally conforms to the following main assumptions: 

• The sources are linearly mixed, and the standard formulation of 
ICA requires at least as many sensors as sources.  

• The sources are at each time instant mutually independent, and at 
most one source is normally distributed.  

• No sensor noise or only low additive noise signals are permitted. 
However, noise is an independent source itself and if as many 
sensor outputs are available as the number of sources, the noise 
signal can be segregated from the mixtures. 

• The mixing is assumed to be instantaneous so there is no time-
delay between the sources introduced by the mixing medium. 

• The mixing process is assumed to be stationary, which implies 
that the statistics of the signals do not change over time. 

The above assumptions ensure that the ICA model is well-defined, which implies 
the identifiability, separability and uniqueness of the model [13]. It is important to 
note that the ICA model can be determined up to a scaling factor and a permutation 
matrix, and these ambiguities are called fundamental indeterminacy. The 
identifiability stated above suggests the conditions when it is possible to identify the 
mixing system up to the fundamental indeterminacy. The linear ICA model is 
identifiable when either all sources are non-Gaussian or the mixing matrix is of full 
column rank and at most one source is normal. Separability states that the source 
signals may be recovered up to some ambiguities, whereas the uniqueness ensures 
that the distribution of the sources can be determined. This is especially important 
to consider when source separation involves more sources than observations.  

The mathematical formulation of the classical ICA is a simplified form of the 
BSS problem 

( ) ( )A=x s t t (8.11)

where A is an N M×  scalar matrix representing the unknown mixing coefficients 
and it is called transfer or mixing matrix. For most ICA applications, noise is either 
assumed to be white Gaussian with variance 2σ or negligible. As stated earlier, 
noise can also be assumed to be part of the sources. In this case, the noise is 
assumed to be statistically independent from the other source components. The goal 
of ICA is to find a linear transformation W of the dependent sensor signals 

( )tx that makes the outputs as independent as possible:  

( ) ( ) ( )ˆ W WA=s = x st t t (8.12)
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where ( )ŝ t  is an estimate of the sources. The sources are exactly recovered when 
W  is the inverse of A  up to a permutation and scale change. Since both the 
sources and the mixing coefficients are unknown, it is impossible to determine 
either the variances or the order of the independent components.   

A common way of solving the ICA problem is to use high-order statistics. A 
classic result in probability theory is the central limit theorem which states that a 
sum of two independent random variables with finite variances has a distribution 
that is closer to Gaussian than any of the two original random variables. Since many 
real world processes yield distributions with finite variances, this explains the 
ubiquitous nature of the normal distributions. The above principle suggests that a 
linear combination of the observed mixture variables is maximally non-Gaussian if 
it is equal to one of the independent components. Therefore, given a function that 
measures the non-Gaussianity of a signal, each local maximum is an independent 
component. ICA estimation can be formulated as the search of directions that are 
maximally non-Gaussian. In practice, non-Gaussianity can be measured by using 
kurtosis or negentropy. Kurtosis is a higher-order cumulant based on statistical 
moments defined as: 

( ) ( ) ( ) 2
4 23= −x x xkurt E E (8.13)

where E is the expectation. Alternatively, the normalised kurtosis can also be used:  

( ) ( )
( )

4

2
2

3
E

E
κ = −

x
x

x
(8.14)

It can be shown that the kurtosis is zero for a Gaussian distribution. In general, a 
distribution having zero kurtosis is called mesokurtic, whereas distributions having 
a positive kurtosis are called super-Gaussian, or leptokurtic in statistics. If the 
kurtosis is negative, the respective distribution is called sub-Gaussian or platykurtic 
as the probability densities tend to be flatter than that of the Gaussian. 

Prior to ICA estimation, it is usually useful to perform some pre-processing to 
the measured sensor data to make ICA simpler and better conditioned. One 
important pre-processing strategy in ICA is to whiten the observed variables, i.e., to 
transform x  linearly for deriving a new vector z  which is white. This means that 
the components of z  are uncorrelated and the covariance matrix of z equals the 
identity matrix.  

In practice, a whitening transformation is always possible and a common 
method of achieving this is through eigenvalue decomposition of the covariance 
matrix, i.e.,
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Table 8.1 Pseudo code segment for the infomax learning algorithm for ICA. 

1. Initialisation:
• Remove the mean value; 
• Perform whitening and 1/ 2E D E

T

v vQ −= =z x x ;
• Initialise the separating matrix so that V = Ι .

2. Initialise optimisation parameters:
V̂= z

3. Estimate the sign of normalised Kurtosis:

( ) ( )
( )

4

2
2

3
E

E
κ = −

where ( )4E , ( )2E  are the fourth and second order moments and 
they are estimated as the mean of the fourth and second power of 
the random variable, respectively.   

4. Calculate contrast based on the infomax principle:
( )( )ˆ tanhV V s Vµ Τ Τ← + ⋅ Ι − ⋅ ⋅ − ⋅ ⋅

where µ  is the learning rate and s  is the sign calculated according 
to the estimation of kurtosis above.  

5. Assess convergence criteria, c:
ˆV V Vδ = −

c V Vδ δ Τ← ⋅
If convergence criterion has not reached a predefined constant then 
return to Step 2. 

6. Source separation:
• Estimate the mixing matrix as: 

1ˆA VQ−=
• Recover the source components as: 

1 ˆŝ x zA V− Τ= =
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( ) E DET T
v vE =xx (8.15)

where Ev is the orthogonal matrix of eigenvectors of ( )TE xx and

( )1D diag , , Nd d= (8.16)

is the diagonal matrix of the corresponding eigenvalues. Therefore, whitening can 
be represented as:  

1/ 2 1/ 2E D E E D E AT T
v v v v

− −= =z x s (8.17)

where ( )1/ 2 1/ 2 1/ 2
1D diag , , Nd d− − −= . It is easy to prove that ( )TE =zz I . The effect 

of whitening is that the new mixing matrix for s is now orthogonal, and therefore 
the number of parameters to be estimated for ICA is reduced from 2N to

( 1) / 2N N − .
One popular approach for estimating the ICA model is Maximum Likelihood

(ML) estimation, which is closely connected to the infomax principle based on 
maximizing the output entropy, or information, of a neural network with nonlinear 
outputs. The pseudo-code shown in Table 8.1 outlines the infomax learning 
algorithm for ICA as suggested by Bell and Sejnowski [14] and further extended by 
Lee et al [15]. 

To illustrate how ICA can be used for BSN sensing, Figure 8.4 illustrates the 
epicardial surface motion measured from an in vivo experiment showing mixed 
movement signal along three orthogonal axes. The recovered ICA components are 
shown in Figure 8.4(b), clearly illustrating the sources of motion due to cardiac, 
respiratory, and other factors such as noise and jitter.  

Since the introduction of the general framework for ICA in the early 80s [16, 
17], many new algorithms have been proposed which lead to a range of successful 
applications in telecommunications, biomedical signal processing, machine 
learning, speech recognition, and time-series analysis. Some of the important 
contributions to ICA include the work of Bell and Sejnowski in developing a fast 
and efficient ICA based on infomax (a principle introduced by Ralph Linsker in 
1992), the introduction of natural gradient by Amari and Cardoso, and Lee and 
Girolami’s work on extending infomax ICA for general non-Gaussian signals [18]. 
Thus far, a number of different approaches have been pursued for blind source 
separation, which include maximum likelihood, Bussgang methods based on 
cumulants, projection pursuit and negentropy methods. It is expected that BSN will 
be served both as an important application base for ICA and as a source of inspiring 
new algorithms due to the unique features and constraints imposed by BSNs.   
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Figure 8.4 (a) The epicardial surface motion measured in vivo showing mixed 
movement signals along three orthogonal axes. (b) The recovered ICA 
components, illustrating the sources of motion due to respiratory (top), cardiac 
(middle), and noise jitter (bottom).

(a)

(b)
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8.3 Feature-Level Fusion 

Fusion at the feature level is the most important step of sensor fusion and it 
involves the integration of feature sets corresponding to different sensors. These 
feature vectors are then fused to form joint feature vectors from which the 
classification is made. Features are an abstraction of the raw data, and the purpose 
of feature extraction is to find main characteristics of the data that can accurately 
and concisely represent the original information whilst maximising the 
discriminative power of the identification process. The first step towards feature-
level data fusion is, therefore, effective feature detection. Once the features are 
selected, the role of feature-level data fusion is to establish decision boundaries in 
the feature space that can separate patterns belonging to different classes. For 
general purpose sensing, there is a wide range of feature extractors that have been 
developed in the literature. In the following sections, we will provide a brief 
overview of the main feature detection and classification techniques that are 
applicable to BSNs.  

8.3.1 Feature Detection 

In general, signal features can be classified into time-domain, frequency-domain, 
and hybrid features as summarised in Table 8.2. Time domain features include basic 
waveform characteristics and signal statistics. Frequency domain features, on the 
other hand, concentrate on the periodic structures of the signal, which include 
coefficients such as those derived from Fourier and Chebyshev transforms [19]. For 
hybrid features, they employ both time and frequency information for complex 
signals, and a good example of this is the wavelet representation.  

Compared to other levels of processing, sensor fusion at the feature level is the 
most extensively studied yet the most problematic area of research. In terms of 
BSN, this is also one of the key areas of development. Effective abstraction of the 
raw sensing data provides important opportunities in using localised processing, 
such as those described in Chapter 7 for minimising the power and bandwidth 
utilisation. It also offers the scope of using distributed inferencing for enhancing the 
reliability and fault tolerance of BSNs for practical deployment. Thus far, the 
methods developed in this area include deterministic, distance-based, fuzzy logic, 
neural network, manifold embedding, and probabilistic approaches. Due to the large 
amount of literature in this area, a comprehensive review of the techniques 
developed is difficult. In the subsequent sections we will only outline some of the 
common techniques that are relevant to BSNs. Due to the importance of neural 
networks for BSNs, particularly the use of Self-Organising Maps (SOMs) for 
context aware sensing and analogue hardware implementation, details concerning 
this class of techniques will be described in Chapter 9. Similarly, we will dedicate 
the most part of Chapter 10 to discussing the value of probabilistic approaches in 
developing autonomic BSNs with distributed inferencing.  
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Table 8.2 A summary of typical signal features used in general purpose sensing applications 
as adapted from [20].  

Feature types 

Time Domain Frequency Domain Hybrid 

• Waveform characteristics (e.g.
slopes, amplitude, envelop, rise time, 
pulse width, maxima/minima 
locations, pulse duration, pulse 
repetition intervals, zero crossing 
rate)  

• Waveform statistics (e.g. mean, 
standard deviations, mean/standard 
deviation of signal derivatives, peak-
to-valley ratio, average magnitude 
difference function), energy, 
kurtosis, entropy and moments  

• Chaotic models and fractal features 

• Ringing, overshoot phenomena, and 
pulse/ ambient noise floor 
relationship

• Periodic structures 
in the frequency 
domain

• Fourier coefficients 

• Chebyshev 
coefficients 

• Spectral peaks 

• Power spectral 
density 

• Wavelet 
representation 
(e.g. Gabor 
wavelet features) 

• Wigner-ville
distributions

• Cyclostationary 
representations

8.3.2 Distance Metrics 

As mentioned earlier, the goal of feature-level processing is to choose features that 
allow pattern vectors belonging to different categories to occupy compact and 
disjoint regions in the feature space. In this case, the decision boundary can be 
based either on parametric forms or the use of probability distributions specified or 
learned through training. Thus far, most feature-based clustering techniques are 
based on the use of distance metrics for measuring similarity or dissimilarity. Let u
and v be two nonzero D-dimensional feature vectors, so a true distance metric, 

( ),d u v , must conform to the following criteria: 

( )
( )
( ) ( )
( ) ( ) ( )

, 0 if and only if 
, 0 for all  and  
, ,  
, , ' ',

= =
≥
=
≤ +

u v u v
u v u v
u v v u
u v u u u v

d
d
d d
d d d

(8.18)

In practice, distance metrics may not obey all the properties specified above. 
Examples of widely used distance metrics include pL  distance (Minkowski 
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distance) and Mahalanobis distance and angle between feature vectors. 
Mathematically, the pL  distance is defined as:   

( ) ( )
1/

1

,
pD

p

i i
i

d u v
=

= −u v (8.19)

where 1 p≤ < ∞ . In general, the distance is less affected by outliers when p is 
small. Due to its geometrical and statistical implications, Euclidean distance ( 2L ) is 
the most popular distance metric used in practice. For instance, it corresponds to the 
total inter-clusters variance when used to construct the objective function in k-
Means clustering. The Euclidean distance is translation and rotation invariant but 
highly dependent on the scale of each feature. The 1L  distance is known as the 
Manhattan (or city block) distance, and counting the number of disagreements is 
implicitly a Manhattan metric. It is worth noting that the Manhattan distance is 
invariant to translation or reflection with respect to a coordinate axis, but not 
rotation. Finally, the L∞ distance is also known as Chebyshev distance and it 
corresponds to the maximum of absolute difference in any single dimension.  

The above distance metrics are based on the assumption that features are 
independent. Mahalanobis distance, on the other hand, uses the correlations 
between variables to remove several of the limitations in Euclidean metrics. It 
measures the dissimilarity between two random vectors (u and v) in the same 
distribution with the covariance matrix ( )[ ] ( )[ ]( )T

E E EΣ = − −u u u u , i.e.,

( ) ( ) ( )1, Td −= − Σ −u v u v u v (8.20)

By taking into account the intra-feature correlation, the Mahalanobis distance is 
scale invariant and it can also provide curved, as well as linear, decision boundaries. 
However, a robust estimation of the covariance matrix is required, and therefore it 
is not suitable for high-dimensional feature vectors. In a special case where the 
covariance matrix is the identity matrix or features are uncorrelated and the 
variances in all directions are the same, the above equation is the same as the 
Euclidean distance. Furthermore, if the covariance matrix is diagonal, the 
measurement becomes normalised Euclidean distance. In pattern recognition, it is 
also common to use similarity measures based on the angle between two vectors.  

8.3.3 Instance-Based Learning 

Once the feature set and the similarity measures are defined, pattern classification 
techniques can be used to fuse the derived sensor data into meaningful events or 
episodes as shown in Figure 8.1(b). Instance-based learning [21] is one of the 
simplest non-parametric statistical learning techniques, in which the decision on 
how to generalise beyond the training data is deferred until a new sample is 
encountered [22]. The prototype vectors, in this case, are the samples in the training 
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set but the method can also be generalised for cluster-level prototype vectors. A 
nearest neighbour classifier [23] classifies an unlabelled observation u by measuring 
its distances from the labelled training samples ( )( ){ }

1
,

M

i i i
c

=
v v , where ( )vic  is the 

assigned label to iv , to which the nearest neighbour belongs. 
In other words, u is classified as ( ) { }1 2, ,...,∈vi Kc C C C  if 

( ) ( )
1

, min  ,i jj N
d d

≤ ≤
=u v u v (8.21)

The decision can also be made based on multiple reference points. In this case, the 
test sample is classified as belonging to the class with the maximum number of 
occurrences. The level of confidence in the answer can be measured by using the 
number of occurrences for each class in the selected set and the distances between 
the test sample and the selected reference points. This learning technique is known 
as k-Nearest Neighbour (k-NN) classifier when a set of reference points is selected 
based on a predefined value k. When the reference points are selected based on their 
distances from the test sample by using a window of pre-specified size, the learning 
technique is known as Parzen window or the kernel density estimation method [24].  

8.3.4 Distance-Based Clustering 

The purpose of distance-based clustering is to group large sets of data { }
1

N

i i
S

=
= u

into clusters, each of which is represented by its mean (centroid) { }
1

K

i i=
= cC . In 

general, distance-based clustering utilises hard methods where a data point is 
assigned to a cluster with a probability either 0 or 1, but the idea can be generalised 
into soft methods by the introduction of fuzzy membership functions. In practice, 
techniques such as k-Means [25], ISODATA [26] and agglomerative clustering 
algorithms [27] are most commonly used for sensor data fusion.   

 The k-Means clustering algorithm is initialised by selecting k initial cluster 
centres, where k is equal to the final required number of clusters. A common 
method for selecting the initial points is to assign the centroid of the entire dataset 
to the first cluster centre and selecting the subsequent centres by the data points 
farthest form the chosen ones. The k-Means training algorithm is an unsupervised 
iterative optimising process, aiming to minimise the sum of the distance between 
the data points and the corresponding centroid: 

( ) ( )( )
1

,
N

i i
i

J d
=

= u uC c (8.22)

where ( )i ∈u Cc  is the nearest centroid to the data vector iu . At each step, data 
points are reallocated to their nearest centroids and the new centroids are 
recalculated by using the newly assembled clusters. The iteration stops when a 
stopping criterion is achieved. In other words, when no reassignments occur or the 
maximum number of iterations is exceeded. This algorithm is insensitive to data 
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ordering and can be parallelised [28], but that is strongly dependent on the cluster 
initialisation and the predefined value of k.

The Iterative Self-Organising Data Analysis (ISODATA) is a partitioning 
relocation clustering algorithm similar to k-Means. However, it allows merging and 
splitting of intermediate clusters according to certain parameters, and thus the 
number of clusters is not fixed to the predefined value k. An example set of 
parameters that determines the splitting and merging conditions are as follows:

• The minimum distance between two cluster centroids is 0d ,
• The minimum number of data points in a cluster is 0n , and
• The maximum standard deviation allowed for each cluster is 0σ .

Two clusters are merged when the distance between their centroids is below 0d .
Each cluster with fewer than 0n  samples is discarded and its elements are 
distributed amongst the remaining clusters. Clusters in which the maximum 
coordinate-wise standard deviation exceeds 0σ  are split along that coordinate. 
Extra conditions can also be introduced to constrain the range of the desired number 
of clusters. A full implementation of the ISODATA algorithm can be founded in 
[29]. 

Agglomerative clustering is a type of hierarchical clustering technique. The 
algorithm is initialised with a set of singleton clusters, each of which is a data point. 
Clusters are gradually merged based on the distance between clusters until a single 
big cluster is formed or a stopping criterion is reached. At each level in the 
hierarchy, clusters are formed from the union of two clusters at the next level down. 
The distance between clusters can be derived from the distance between individual 
points. In practice, three common measures of distance between clusters are used 
and they include single link, complete link and average link metrics. They are equal 
to the minimum, maximum and average distance from any member of one cluster to 
any member of the other cluster, respectively, i.e.,   

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }

single 1 2 1 2

complete 1 2 1 2

average 1 2 1 2

, min , | ,

, max , | ,

, avg , | ,

d C C d C C

d C C d C C

d C C d C C

= ∈ ∈

= ∈ ∈

= ∈ ∈

u v u v

u v u v

u v u v

(8.23)

A single big cluster output from the agglomerative clustering algorithm can be 
visualised as a tree or a dendrogram. Clusters can be obtained by setting a threshold 
level across the tree. To test which level in the hierarchy contains the best clusters, 
the standard measure of within-cluster variance in this case does not apply as the 
algorithm starts from clusters with no variance at all. Instead, we can use the 
difference between the level at which it was formed and the level at which it is 
merged, or compare the average distance within clusters to the average distance 
between clusters. The disadvantage of this algorithm is decisions made earlier in the 
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process are never revisited. Therefore, if an early agglomeration destroys the 
structure of a cluster, it will not be detected in the later stages.  

As mentioned earlier, feature vectors in the above algorithms are generally 
partitioned into hard clusters, i.e., each feature vector can be a member of one 
cluster only. Fuzzy clustering resolves some of the intrinsic problems associated 
with hard clustering by the introduction of a membership function such that a 
feature vector can have multiple membership grades to multiple clusters. Fuzzy c-
Means (FCM) [30] is a clustering technique which allows each data point to be 
assigned to more than one cluster with different probability or degrees of 
membership. It is based on an iterative minimisation of the following cost function: 

( ),
1 1

( ) ,
N K

m
m i j i j

i j

J dλ
= =

= u cC (8.24)

where m is a weight exponent and ,i jλ indicates the membership or degree that a 
data point iu belongs to cluster jC . In a fuzzy set, membership must satisfy the 
following conditions: 

, , ,
1 1

1, ;   0, ;   [0,1], ,
K N

i j i j i j
j i

i j i jλ λ λ
= =

= ∀ > ∀ ∈ ∀ (8.25)

At each step, the cluster centres jc  and the degree of membership ,i jλ  can be 
updated by: 
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A common stopping criterion for this algorithm is when the maximum change 
between the degree of membership at two consecutive steps is less than a pre-
defined threshold ε .

( ) ( ){ }, ,max 1ij i j i jt tλ λ ε+ − < (8.28)

It is also interesting to note that when the degree of membership is constrained to 0 
and 1, the FCM becomes the hard k-Means clustering algorithm. 

Other techniques for pattern classification include the decision tree method, 
which is performed by an iterative selection of individual features that are most 
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salient at each node. It therefore implicitly incorporates feature selection during the 
classification process. The feature selection criteria used include the Fisher’s 
criterion, node purity and the information content. Popular methods in this category 
include the CART and C4.5 algorithms. Their numerical implementations are both 
available in the public domain [31, 32]. The main advantage of the method is its 
speed and the possibility of interpreting the decision rules for each individual 
feature.  

Recently, the use of Support Vector Machines (SVMs) has also attracted 
significant research interest for pattern classification. The original idea of SVM was 
based on Vapnik’s method of finding an optimal hyper-plane for dividing two 
classes, which does not depend on a probability estimation [33, 34]. This optimal 
hyper-plane is a linear decision boundary that separates the two classes and leaves 
the largest margin between the vectors of the two classes. He demonstrated that the 
optimal hyper-plane is determined by only a small fraction of the data points, the 
so-called support vectors. In 1995, Cortes and Vapnik extended the method for the 
case of non-separable classes, and therefore made SVM a general tool for solving 
general classification problems [35].  

Another important approach towards pattern classification is the neural 
networks method. The most commonly used techniques include feed-forward 
networks, such as the multi-layer perceptron and radial basis function networks, and 
SOM or Kohonen Network [36, 37]. The main advantage of the neural networks 
approach is due to its efficient learning algorithms and the potential for analogue 
hardware implementation. This is attractive for BSNs, especially for low-power 
processing requirements. In Chapter 9, we will provide some detailed examples of 
how the neural networks approach, particularly SOM, can be used for pattern 
classification required for context aware sensing.  

8.4 Dimensionality Reduction  

In pattern recognition, dimensionality reduction techniques are commonly used 
when the sample data is assumed to lie on a manifold, which can be non-linear in 
most general cases. The intrinsic dimensionality is usually related to the number of 
independent variables that account for most variability within the data. As only 
intrinsic features are preserved, dimensionality reduction may lead to a better 
understanding of the data. Thus far, there are a number of techniques in the 
literature which address the problem of dimensionality reduction. The most 
commonly used technique is Principal Component Analysis (PCA), which provides 
a reference system for which the variables with small variance are discarded. Thus, 
the high-dimensional data is projected to the subspace spanned by the most 
dominant principal components, leading to an approximation of the original data in 
a least-squares sense. The linear projections of the data are selected according to the 
maximal variance subject to the orthogonality constraint.  

The main disadvantage of PCA is that it is only able to find linear subspaces, 
and therefore, cannot deal with data lying in non-linear manifolds. Furthermore, the 
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number of principal components to keep in practice is a complicated issue, although 
a number of rules of thumb can be applied [38].  

Similar to PCA, techniques such as Projection Pursuit can also be used to search 
for linear projections. It is an unsupervised technique that selects low-dimensional 
linear orthogonal projections of a high-dimensional point cloud by optimising an 
objective function called the projection index.

Other techniques for dimensionality reduction include Fisher Projection (FP) 
which is based on linear projection of the data to a sub-space where the classes are 
well-separated. With this technique, however, if the amount of training data is 
inadequate or the quality of some of the features is poor, then some derived 
dimensions may be a result of noise rather than the intrinsic differences among 
feature classes [39].   

Although many methods can deal with non-linear dimensionality reduction, 
most of them rely on local dimensionality reduction. In particular, some locally 
linear techniques [40, 41] extend PCA to non-linear data by first performing 
clustering and then applying PCA for each cluster. The main limitation of such 
techniques is their inability to extract the global structure of the data. Common non-
linear techniques leading to a global low-dimensional model of the observations 
include SOM as mentioned earlier [42] and Generative Topographic Mapping
(GTM) [43].   

8.4.1  Multidimensional Scaling (MDS)  

Multidimensional Scaling (MDS) is a technique closely related to PCA, and is 
based on the definition of a similarity matrix, i.e. a matrix whose elements indicate 
the degree of similarity between the objects under consideration. MDS has been 
successfully applied to the visualisation of high-dimensional data in low-
dimensional spaces and has been used to discover perceptual representations in 
psychology by analysing the similarity of stimuli to reveal the underlying structure 
of the data [44, 45]. The similarity matrix may be defined as a metric distance 
(metric scaling) but can also be provided as rank ordered information (non-metric 
scaling) in which case the rank order of the dissimilarities must be preserved. A 
common way to define the similarity matrix is to consider the stimuli as points in a 
multidimensional space where similarity is inversely related to the Minkowski 
distance.

In general, methods that explicitly use a metric are preferred since they enable 
generalisation from a learned embedding to unseen examples. Generalisation in this 
case becomes an issue of learning an approximation of the function described by 
the embedding. The use of a global Minkowski metric leads to a linear 
reconstruction of manifolds, which, by and large, may not be the most appropriate. 
In particular, if the Euclidean distance is used, MDS is equivalent to PCA and the 
method is known as Classical Multidimensional Scaling (CMDS).   
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8.4.2 Locally Linear Embedding (LLE) 

Locally Linear Embedding (LLE) exploits the local geometry of the neighbouring 
points in the high-dimensional space in order to map the input data points onto a 
global coordinate system of lower dimension while the intrinsic relationships 
between the points are preserved [46]. Each point in the high-dimensional space is 
approximated by a linear combination of its neighbours and the coefficients for that 
combination are selected such that the mapping is invariant to scaling, rotation and 
translation. LLE consists of the following main steps:  

1.  Computation of the neighbourhood of each data point iu

The calculations are performed through the selection of the k-nearest neighbours 
on the basis of the Euclidean metric. However, it is also common to determine a 
radius, δ, defining a ball that encompasses the neighbourhood of each point.

2.  Computation of the weights ijw  that best reconstruct each data point iu
from its neighbours 

The following function is introduced to measure the reconstruction error that 
needs to be minimised: 

( )
2

−= u ui ij j
i j

w wε (8.29)

The minimisation is performed subject to two constraints: a) each point is 
reconstructed only using its neighbours ( 0 if ij j iw = ∉ Ωu where Ω represents 
the neighbourhood of the point), and b) 1, j ijwi =∀  in order to ensure the 
invariance to translations. The minimisation problem subject to the above 
constraints can be solved in a closed form. The reconstruction weights 
characterise intrinsic geometric properties and provide the invariance to 
rotation, rescaling, and translations of each point and its neighbours. 

3.  Computation of the low-dimensional vector iv  corresponding to each data 
point iu  through the use of the weights ijw  previously calculated 

Similarly to the previous step, the coordinates of the vectors are found through 
the minimisation of a cost function. In this case, however, the weights are fixed 
and the coordinates must be optimised. Therefore, the cost function now 
becomes: 

( )
2

= −Φ v vv i ij j
i j

w (8.30)
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To ensure the problem is well posed, the cost function is also minimised subject 
to two constraints: a) the v  coordinates are centred on the origin as the 
translations of iv should not alter the cost function, and b) the vectors iv have 
unit covariance, thus avoiding degenerated solutions (i.e. 0i =v ). As a 
consequence of the invariance of the cost function to rotations and 
homogeneous rescaling, there is no loss of generality in imposing the second 
condition. The cost function can be rewritten in a quadratic form and the 
minimisation of the above equation can be performed by solving an N N×
eigenvalue problem. 

8.4.3 Isometric Mapping (Isomap) 

Alternatively, Tenenbaum et al [47] proposed the use of geodesic distance 
measured on the manifold, defined by the data as the basis to calculate the 
similarity matrix. Non-linear dimensionality reduction is approached as a problem 
of discovering a Euclidean feature space embedding a set of observations that 
attempts to preserve the intrinsic metric structure of the data. It should be noted that 
an isometry : 'f M M→  is an one-one correspondence such that 

( ) ( )( ) ( )' , ,=x y x yd f f d for all x, y in M. Isomap is an isometric feature-mapping 
procedure that aims to recover low-dimensional non-linear structure and consists of 
the following three main stages: 

1.  Discrete representation of the manifold - Random selection of m points from 
the n observations to serve as nodes of a topology preserving network. The 
neighbourhood is defined through the selection of k-neighbours or a radius r. If 
m is too small the distance calculation will be a poor approximation to the true 
manifold distance, whereas if m is too large (relative to n) the graph will miss 
many appropriate links.

2.  Manifold distance measure - This measure starts with the assignment of a 
weight, ijw , to each link. Such weight is equal to the Euclidean distance 
between the nodes i and j in the observation space. The geodesic distance is 
then considered to be the shortest distance along the path by following the 
previously calculated weights. Should the data be infinite, the graph-based 
approximation to manifold distance can be made arbitrarily accurate. 

3.  Isometric Euclidean embedding - Classical MDS is used to find a k-
dimensional embedding that preserves as closely as possible the graph 
distances.

As an example, Figure 8.5 demonstrates a simple physical exercise sensing 
experiment where four two-axis accelerometers were placed on the left and right 
ankles and legs. The activities of the subject during the exercise routine include: 1) 
sitting (chair), 2) standing, 3) steps, 4) sitting (floor), 5) demi-plie, 6) galloping left,
7) skipping, 8) galloping right, 9) side kick, 10) front kick, and 11) walking.
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Although the dimensionality of the original raw signal is eight, the application of 
the Isomap reveals that the intrinsic dimensionality of this data set is in fact only 
two. This is evident from the residual variance of the embedded data which 
decreases rapidly from 0.41 to 0.05, 0.04, and 0.03 within the first four Isomap 
dimensions. 

For pattern recognition, the use of dimensionality reduction is advantageous for 
many classification tasks, as it avoids the over-fitting issue in many high-
dimensional problems due to the practical limit of the training sample size. It also 
offers a convenient way of visualising the intrinsic structure of the data. For 
example, it is evident from Figure 8.5 that the separation of the eleven activities 
involved is good in general, but we may encounter significant challenges when 
trying to separate activities 6, 7, and 8, (i.e., galloping left, skipping, and galloping 
right) as with the current sensor placement the distribution of the feature vectors are 
all mixed together. Another important issue raised by this experiment is that since 
the intrinsic dimensionality of the sensor data is only two-dimensional, some of the 
information collected by these sensors is likely to be redundant. With BSNs, this 
boils down to the question of how to ensure strategic placement of the sensors to 
guarantee that the information collected provides the most discriminative power in 
terms of pattern separation. To achieve this, we introduce in the next section the 
concept of feature selection and explain in detail a new Bayesian Framework for 
Feature Selection (BFFS).  

8.5 Feature Selection 

In pattern recognition, the aim of feature selection is to reduce the complexity of an 
induction system by eliminating irrelevant and redundant features. This technique is 
becoming increasingly important in the field of machine learning for reducing 
computational cost and storage, and for improving prediction accuracy. Intuitively, 
a high-dimensional model is more accurate than a low-dimensional one. However, 
the computational cost of an inference system increases dramatically with its 
dimensionality, and therefore we have to balance accuracy and overall 
computational cost.  

On the other hand, the accuracy of a high-dimensional model may deteriorate if 
the model is built upon insufficient training data. In this case, the model would not 
be able to provide a satisfactory description of the information structures. The 
amount of training data required to understand the intrinsic structure of an unknown 
system increases exponentially with its dimensionality. An imprecise description 
could lead to serious over-fitting problems when learning algorithms are confused 
by structures brought about by irrelevant features. In a computationally tractable 
system less informative features, which contribute little to the overall performance, 
need to be eliminated. Furthermore, the high cost of collecting a vast amount of 
sampling data requires efficient selection strategies to remove irrelevant and 
redundant features. 
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Figure 8.5 Accelerometer readings from an exercise sequence (top) and its 
corresponding Isomap embedding results (bottom). The residual variance of 
the embedded data decreases rapidly from 0.41 to 0.05, 0.04, 0.03 within the 
first four Isomap dimensions. (See colour insert.) 

In machine learning, feature selection methods can often be divided into two 
groups [48]: wrapper and filter approaches based on the relationship between 
feature selection and induction algorithms. The wrapper approach uses the 
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estimated accuracy of an induction algorithm to evaluate candidate feature subsets 
[49]. By contrast, the filters learn from data and operate independently of any 
specific induction algorithm. The filter approach evaluates the suitability of 
candidate subsets based on their information content with regard to target concepts. 
The filters are not tuned to the specific interactions between the induction algorithm 
and the information structures embedded in the training dataset. Given enough 
features, filter-based methods attempt to eliminate features in a way that can 
maintain as much information as possible about the underlying structure of the data. 
This makes the technique particularly useful for BSNs in that only selected sensors 
with the most informative features are needed.  

In this section, we will describe a filter selection algorithm based on Bayesian 
theory and Receiver Operating Characteristic (ROC) analysis for feature selection. 
We demonstrate that likelihood probability plays an important role in the 
elimination of both irrelevant and redundant features in the algorithm. The 
experimental results indicate that the proposed method is fast and efficient, and can 
be used to improve the performance of the classification process. We also explain 
its potential application to the understanding of behaviours of human visual search. 

8.5.1 Feature Relevance  

The techniques for dimensionality reduction have received significant attention in 
the field of supervised machine learning. Generally speaking, there are two groups 
of methods: feature extraction and feature selection. In feature extraction, the given 
features are transformed into a lower-dimensional space, without much loss of 
information. One of the feature extraction techniques is PCA as mentioned earlier, 
which transforms a number of correlated variables into a number of uncorrelated 
principal components. For feature selection, however, no new feature is created. 
The dimensionality is reduced by eliminating irrelevant and redundant features. An 
irrelevant (or redundant) feature provides no (or no new) information about the 
target concept [50]. In Bayesian inference, the posterior probability is used for a 
rational observer to make decisions since it summarises the information available. 
Consequently, the formal definition of relevance can be based on the conditional 
independence [48, 51]. 

100100

010010

001001

110110

101101

011011

000 111

Forward Backward

Figure 8.6 The search space for selecting feature subset from three input 
features. Each state in the space represents a candidate feature subset. For 
instance, state 101 indicates that the second feature is not included.
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Given a set of sensor features { }(1) (1)
1,1i i N= < <G G , event y is conditionally 

independent of feature set { }(2) (2)
2,1i i N= < <G G  (i.e., given (1)G , (2)G provides no 

further information in detecting y ) if for any assignment of y

( ) ( ) ( )(1) (1) (2) (1) (2),  when , 0P P P= ≠y yG G G G G (8.31)

Optimum selection of feature subset involves two major difficulties: a search 
strategy to select candidate feature subsets and an evaluation function to assess 
these candidates. The size of the search space for the candidate subset selection is 
2N, i.e. a feature selection method needs to find the best one amongst 2N candidate 
subsets, given N features. As an example, Figure 8.6 shows the search space for 
three features and demonstrates how forward and backward search methods can be 
used to include/exclude relevant features in the selected feature subset.  

Since the size of the search space grows exponentially with the number of input 
features, an exhaustive search of the space is impractical. As a result, a heuristic 
search strategy, such as the greedy search and the branch and bound search,
becomes necessary [48, 51-53]. Forward selection denotes that the search strategy 
starts with the empty feature set, while backward elimination denotes that the 
search strategy starts with the full feature set. As an example, Koller and Sahami 
[51] proposed a sequential greedy backward search algorithm to find ‘Markov 
blankets’ of features based on the expected cross-entropy evaluation. 

The feature selection methods are divided into two groups (wrapper and filter)
according to how the evaluation function is designed. The filters use the 
information content (typically measured by interclass distance, statistical 
dependence, and information-theoretic divergences [54]) of the feature subsets for 
the evaluation. As a result, the filter approaches are independent of any induction 
algorithm. Kira and Rendell, in their RELIEF [52] algorithm, formulated a 
weighting method to evaluate the discriminability of each feature by calculating 
Near-Hit to measure within-concept spread and Near-Miss to measure between-
concept separation, whereas the FOCUS [53] algorithm searches for the minimal 
feature subset via a systematic consistency test – but this algorithm is sensitive to 
noise.  

On the other hand, the wrappers directly use the predictive accuracy of some 
induction algorithms to evaluate candidate feature subsets [49]. Statistical 
techniques such as cross-validation are employed for the purpose of evaluation [55]. 
Generally speaking, for a given algorithm, wrappers achieve a better accuracy than 
filters. However, compared to filters, they lack generality and can be 
computationally demanding. This is because they are directly related to specific 
induction algorithms, and running these algorithms on a large number of features 
multiple times can be computationally prohibitive. Other popular feature selection 
techniques include Sequential Forward Search (SFS), Sequential Backward Search
(SBS), and Sequential Floating Forward Search (SFFS) methods [56-58].  

Collecting informative training samples from the whole population, and 
correctly labelling them, are important aspects of feature selection [48]. The cost of 
labelling can be high, and labelling errors directly affect the performance of feature 
selection and induction algorithms. In a Bayesian framework, the likelihood 
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probabilities of each class as well as their priors can be estimated independently 
through controlled experiments. This is useful in practice to avoid direct random 
sampling from the whole population, which can be a tedious and costly task. 

By using the Bayes rule, an assignment of =y a , (8.31) can be rewritten as 

( ) ( )
( ) ( ) ( ) ( )
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Consequently, we can obtain an equivalent definition of relevance by using the 
likelihood ratio, i.e., given a set of features from the sensor network 

{ }(1) (1)
1,1i i N= < <G G , event y  is conditionally independent of feature set 

{ }(2) (2)
2,1i i N= < <G G  if for any assignment of ( )(1) (2)when , 0P= ≠y a G G

( ) ( )(1) (1) (2), , ,  L L= ≠ = = ≠y a y a y a y aG G G (8.34)

where ( ),L = ≠y a y aG  is the likelihood ratio: 

( ) ( )
( )

|
,

|
P

L
P

=
= ≠ =

≠
y a

y a y a
y a

G
G

G
(8.35)

Theoretically, Equations (8.31) and (8.34) are equivalent. But (8.31) is based on the 
posterior probability, whereas (8.34) is based on the likelihood ratio. This 
modification connects feature selection with the performance assessment of 
decision making. As will be seen in the following sections, a sufficient performance 
assessment can be achieved by ROC analysis, in which the likelihood ratio plays an 
essential role.  

8.5.2 Feature Relevance Based on ROC Analysis 

With the above definition, we can now examine the relationship between ROC and 
feature ‘irrelevance’ to establish the link between feature selection and the 
performance of decision making. A proper ROC is generated by using the 
likelihood ratio or its equivalent as the decision variable [59]. Given a pair of 



8. Multi-Sensor Fusion       267

likelihoods, the best possible performance of a classifier can be described by the 
corresponding proper ROC, which can be obtained via the Neyman-Pearson 
ranking procedure by changing the threshold of the likelihood ratio [60]. Given two 
distributions ( )|P =y aG and ( )|P ≠y aG  as demonstrated in Figure 8.7(a), the 
hit and false-alarm rates, according to the Neyman-Pearson procedure, are defined 
as

( )
( )

( )
( )

,

,

 |

 |

h L

f L

P P d

P P d

β

β

= ≠ >

= ≠ >

= =

= ≠

y a y a

y a y a

y a

y a

G

G

G G

G G
(8.36)

where β is the threshold and ( ),L = ≠y a y aG  is the likelihood ratio as defined 
above.

For a given β , a pair of hP  and fP can be calculated. When β  changes from ∞
to 0, hP  and fP  change from 0% to 100%. Therefore, the ROC curve is obtained by 
changing the threshold of the likelihood ratio. Figure 8.7(b) depicts the ROC curve 
corresponding to the likelihood distributions shown in Figure 8.7(a). In discrete 
forms, where only some discrete points of ( ),h fP P are available, straight-line 
segments are used to connect these points to form a convex hull. Every point on 
those straight-line segments is realisable by applying a randomised strategy [59, 
61]. When misjudgement costs are taken into consideration, minimal maximal-cost 
points in the ROC space can only be found on the vertices of the convex hull [62].  

In a ROC space, the hit rate is the function of the false-alarm rate. The slope at a 
point on the ROC curve is equal to the associated likelihood ratio. The Area Under 
the ROC Curve (AUC) is an important measure of discriminability of the two 
classes described by the two likelihood distributions. The equivalent statistical 
metric to the AUC is the Wilcoxon statistics, which was originally designed to 
estimate the probability of the rank of two random variables [63, 64]. 

Based on the above definition and given two pairs of feature distribution, 
( )(1) |P =y aG , ( )(1) |P ≠y aG  and ( )(2) |P =y aG , ( )(2) |P ≠y aG , we have 

two corresponding ROC curves obtained from the Neyman-Pearson procedure: 
( )(1) ,ROC = ≠y a y aG  and ( )(2) ,ROC = ≠y a y aG . It can be proved that  

( ) ( )(1) (1) (2), , ,ROC ROC= ≠ = = ≠G G Gy a y a y a y a (8.37)

if and only if 

( ) ( )(1) (1) (2), , ,  L L= ≠ = = ≠y a y a y a y aG G G (8.38)
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Figure 8.7 Conditional probabilities (a) ( )|P =y aG and ( )|P ≠y aG
and their ROC curve (b). In the ROC space shown in (b), hit rate changes 
from 0% to 100% when false-alarm rate varies from 0% to 100%. 

and that ( )(1) (2), ,ROC = ≠y a y aG G is not under ( )(1) ,ROC = ≠y a y aG at
any point in the ROC space. Based on the above equations, an equivalent definition 
of feature irrelevance based on ROC can be derived; in other words, given a set of 
features from the sensor network { }(1) (1)

1,1i i N= < <G G , event y  is conditionally 
independent of feature set { }(2) (2)

2,1i i N= < <G G  if for any assignment of =y a

( ) ( )(1) (1) (2), , ,  ROC ROC= ≠ = = ≠y a y a y a y aG G G (8.39)

Generally speaking, two ROC curves can be unequal when they have the same 
AUC. Since (1)G is a subset of { }(1) (2),G G  we have: 

( ) ( )(1) (1) (2), , ,  AUC AUC= ≠ = = ≠y a y a y a y aG G G (8.40)
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The above statements point out the effects of feature selection on the 
performance of decision-making and the overall discriminability of a feature set. It 
indicates that irrelevant features have no influence on the performance of ideal 
inference, and the overall discriminability is not affected by irrelevant features. So 
in summary, the conditional independence of features is determined by their 
intrinsic discriminability, which can be measured by the AUC.  

By using notation ( )(2) (1),I y  G G  to denote the conditional independence of 
event y  to sensor features (2)G  given (1)G ( (1)G , (2)G and y  are assumed to be 
disjoint without losing generality), the above framework can be applied to interpret 
properties of conditional independence. For example, we can obtain the 
decomposition property:  
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and the contraction property: 
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For instance: 
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In the above equations A B signifies that B follows from A (in other words, if A,
then B).
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By applying the contraction and decomposition properties (as described above), 
we have the following properties for feature selection: 

( )( )
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(8.41)

In the above equation, ( )( )(3) (1) (2), ,I y G G G and ( )(2) (1),I y G G represent two steps 
of elimination; in other words features in (3)G  can be removed when features in 

(1)G and (2)G  are given. This can be immediately followed by another elimination 
of features in (2)G owing to the existence of features in (1)G . ( )(3) (1),I y G G
indicates that features in (3)G remain irrelevant after features in f(2) are eliminated. 
As a result, only truly irrelevant features are removed with each iteration by 
following the backward elimination process. In general, backward elimination is 
less susceptible to feature interaction than forward selection. 

Because the strong union property ( ) ( )(2) (1) (2) (1) (3), , ,I Iy yG G G G G  does 
not generally hold for conditional independence, irrelevant features can become 
relevant if more features are added. Theoretically, this could limit the capacity of 
low dimensional approximations or forward selection algorithms. In practice, 
however, the forward selection and approximate algorithms proposed below tend to 
select features that have large discriminability and provide new information. For 
example, a forward selection algorithm may be preferable in situations where it is 
known that only a few of a large set of features are relevant and interaction between 
features is not expected to be a dominant effect. 

With the above theory in place, we can now define the general principle for 
feature selection for multiple events. We denote that the set of possible events of 
y is { }, 1i i N=a and N is the number of event classes. ( ),i iAUC = ≠y a y aG
denotes the AUC of ( )|P =y aG  and ( )|P ≠y aG . In this study, the expectation 
of the AUC is used as an evaluation function: 

( ) ( )( ) ( ) ( )
1

,
N

AUC i i i
i

E E AUC P AUC
=

= = = = ≠y a y a y aG G G (8.42)

In the above equation, the prior probabilities ( )iP =y a  can either be estimated 
from data or determined empirically to take misjudgement costs into account. The 
use of the expected AUC as an evaluation function follows the same principle of 
sensitivity and specificity. It is not difficult to prove that  

( ) ( )(1) (2) (1),AUC AUCE E=G G G
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is equivalent to  

( ) ( ) { }(1) (2) (1), , = , , 1i i i iAUC AUC i N= ≠ = ≠ =y a y a y a y aG G G ;

i.e., features in (2)G are irrelevant given features in (1)G . ( )AUCE G  is also a 
monotonic function that increases with the number of features, and 

( )0.5 1AUCE≤ ≤G . For a binary class, ( ) ( )1 2,AUCE AUC= = =G G y a y a
( )2 1,AUC= = =G y a y a , i.e. the calculation of ( )AUCE G  is not affected by prior 

probabilities.
To use likelihood distributions to calculate the expected AUC in multiple-class 

situations, we need to avoid ( )| iP ≠y aG  in (8.42). By using the Bayes rule, one 
can derive that 

( ) ( )
1

| |
k i

i ki k
k N

P H P
≠

=

≠ = =y a y aG G (8.43)

where 

( )
( )

( )
1

|
 for 

|

k
ki j i

j
j N

P
H i k

P
≠

=

=
= ≠

=

y a

y a

G

G

By assuming that the decision variable and decision rule for calculating 
( ),i kAUC = =y a y aG  and ( ),i iAUC = ≠y a y aG are the same [59], we have 

( ) ( )
1

, ,
k i

i i ki i k
k N

AUC H AUC
≠

=

= ≠ = = =y a y a y a y aG G (8.44)

where ( ),i kAUC = =y a y aG  represents the AUC given two likelihood 
distributions ( )| kP =y aG and ( )|   .iP i k= ≠y aG Equation (8.44) can therefore 
be used for evaluating ( ),i iAUC = ≠y a y aG  for multiple-class cases. By 
substituting (8.44) into (8.42), we have 

( ) ( ) ( )
1 1

,
N k i

AUC i ki i k
i k N

E P H AUC
≠

= =

= = = =G Gy a y a y a (8.45)

8.5.3 Feature Selection Based on ROC Analysis 

Since removing or adding an irrelevant feature does not change the expected AUC, 
both backward and forward greedy selection (filter) algorithms can be designed to 
use the expected AUC as an evaluation function. A backward elimination approach 
provides a greedy algorithm for feature selection. It starts with the full feature set 
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and removes one feature at each iteration. A feature ( )k
j ∈f G to be removed is 

determined by using the following equation: 

( ) { }( )( )
( )

( ) ( )arg min
k

i

k k
j AUC AUC iE E

∉
= − −

f G
f G G f (8.46)

where ( )kG is the temporary feature set after kth iteration and { }( )k − iG f  is the set 
( )kG  with if  removed.  
Estimating the AUC in a high-dimensional space is time-consuming. The 

accuracy of the estimated likelihood distribution decreases dramatically with the 
number of features given limited training samples, which in turn introduces ranking 
error in the AUC estimation [65]. Therefore, an approximation algorithm is 
necessary to estimate the AUC in a lower-dimensional space. As explained earlier, 
the decrease of the total AUC after removal of a feature if  is related to the overlap 
of the discriminability of the feature with other features. In the approximation 
algorithm, we attempt to construct a feature subset ( )kH from the current feature set 

( )kG  and use the degree of discriminability overlap in ( )kH  to approximate that in 
( )kG . Similar methods have been reported in [51, 66]. A heuristic approach is 

designed to select sk features from ( )kG  that have the largest overlap with feature 
if  and we assume that the discriminability overlap of feature if  with other 

features in ( )kG  is dominated by this subset of features. Tables 8.3 and 8.4 
summarise the backward elimination and forward selection algorithms for selecting 
K features. 

As indicated by the fact that the strong union axiom ( )(2) (1),I y G G
( )(2) (1) (3), ,I y G G G  does not generally hold for conditional independence [67], 

irrelevant features can become relevant if more information is given. In other 
words, feature irrelevance in low-dimensional feature space is different from that in 
high-dimensional feature space. Theoretically, this fact limits the capacities of all 
low-dimensional approximation algorithms and forward selection algorithms. In 
general, the proposed algorithm tends to select features that have strong 
discriminability, and features that provide new information. 

To illustrate how the BFFS algorithm works for BSN applications, Figure 8.8 
illustrates a laboratory activity sequence as sensed by six two-axes accelerometers 
placed on the ankles, legs, and wrists. The different activities to be detected include 
sitting, typing, writing on paper, standing, walking, writing on white board, 
soldering, and drinking. At a first glance, the placement of the sensors may look 
rational, as the activities to be differentiated all involve ankles, legs and wrists. 
Upon further examination, however, it reveals that the intrinsic dimensionality of 
the data is low as evident from the Isomap embedding result shown in Figure 8.8. 
The Isomap result also demonstrates the good separation of different activities in 
the embedded feature space. The question now is if we can reduce the number of 
sensors without affecting the overall sensitivity and specificity of the classification
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Table 8.3 Pseudo-code for BFFS backward elimination algorithm.

(a)  Let ( )kG be the full feature set and k be the size of the full 
feature set; 

(b)  Calculate the discriminability differential matrix ( )M ,i jf f

( ) { }( ) { }( )M , ,i j AUC i j AUC jE E= −f f f f f
( ) ( )for ,  and k k

i j i j∈ ∈ ≠f G f G f f ;

(c) If k=K, output ( )kG ;

(d) For ( )( ) 1∈ =k
i i kf G :

• Select sk  features from ( )kG to construct a feature subset 
( )ikH . The criterion of the selection is to find sk features

jf , for which ( )M ,i jf f  is the smallest, where 
( )  and k

j i j∈ ≠f G f f ;

• Calculate ( ) { }( ) ( )( ) ( )
AUCD i ik k

i AUC i AUCE E= −H Hf f ;

(e) Select feature df with the smallest ( )AUCD if and set 

{ }( ) ( )k k
d= −G G f ;

(f) k=k-1; go to (c). 

algorithm. By the use of the proposed BFFS algorithm, Table 8.5 illustrates the 
result of the most discriminative sensor channels as revealed by the backward 
elimination algorithm. The results in Table 8.5 show that after the incorporation of 
sensor channels 12, 1, 11, and 2, there is little gain in the AUC by using further 
sensor channels. In other words, for uniquely separating the eight different activities 
mentioned above, we only need two accelerometers positioned on the left and right 
wrists. This result may sound surprising. By careful reasoning, however, the 
derived sensor placement in fact makes perfect sense. This is because in this 
problem setting, activities that involve leg and ankle movements are also coupled 
with unique hand gestures. It is therefore possible in this case to distinguish sitting, 
standing, and walking from other activities that mainly involve hand motion by the 
use of wrist sensors only. To demonstrate how the selected sensor channels perform 
by using different classifiers, Table 8.5 summarises the result of using Naïve Bayes, 
Pruned C4.5, Instance Based Learning (with k = 1 and 3 respectively), and SVM.  
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Table 8.4 Pseudo-code for BFFS forward feature selection algorithm.

(a) Let ( )kG be empty and k be zero; 

(b)  Calculate the discriminability differential matrix ( )M ,i jf f

( ) { }( ) { }( )M , ,i j AUC i j AUC jE E= −f f f f f
( ) ( )for ,  and k k

i j i j∈ ∈ ≠f G f G f f ;

(c) If k=K, output ( )kG ;

(d) For ( )( ) 1∈ =k
i i kf G :

• Select sk  features from ( )kG to construct a feature subset 
( )ikH . The criterion of the selection is to find sk features

jf , for which ( )M ,i jf f  is the smallest, where 
( )  and k

j i j∈ ≠f G f f ;

• Calculate ( ) { }( ) ( )( ) ( )
AUCD i ik k

i AUC i AUCE E= −H Hf f ;

(e) Select feature df  with the largest ( )AUCD if and set 

{ }( ) ( )k k
d=G G f ;

(f) k=k+1; go to (c). 

It is evident that through the use of only two accelerometers as determined by 
BFFS, the performance difference is no more than 3% for all the classifiers 
concerned. For practical BSN applications, the efficient use of sensor channels 
plays an important part in the power and communication bandwidth usage. The 
proposed BFFS algorithm can therefore provide a systematic way of selecting 
optimal sensing channels for pattern classification.  

8.6 Decision-Level Fusion 

In previous sections, we have provided detailed explanation of how data- and 
feature-level sensor fusion techniques can be used for BSN applications. Another 
important component of multi-sensor fusion as outlined in Figure 8.1 is decision-
level fusion. In general, the decision-level fusion is based on a joint declaration of 
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multiple single source results to achieve an improved event or episode detection 
result. At this level of fusion, it also provides a unique mechanism for incorporating 
prior knowledge and domain specific information as shown in Figure 8.1. For 
decision-level sensor fusion, common methods include classical inference, 
Bayesian inference, and Dempster-Shafer’s method [20].  

Classical inference seeks to determine the validity of a proposed hypothesis 
based on empirical probabilities. It computes the joint probability given an assumed 
hypothesis. In general, classical inference does not take advantage of a priori
likelihood assessments and can assess only two hypotheses at a time, i.e., a null 
hypothesis and its alternative. Although the method can be generalised to include 
multidimensional data from multiple sensors, complexities arise for multivariate 
data. In terms of hypothesis acceptance or rejection, the method typically uses 
maximum a posteriori or maximum likelihood decision rules. For the former, the 
method accepts hypothesis 0H being true if ( )0 |P H O , i.e., the probability of 

0H given observation O , is greater than ( )1 |P H O , i.e., the probability of 1H
given O . For the maximum likelihood criterion, it accepts hypothesis 0H  being 
true if ( ) ( )0 1| |P O H P O H> . Other criteria can also be used, which include 
minimax, Bayes, and Neyman-Pearson decision rules. 

 Bayesian inference, on the other hand, uses the likelihood of a hypothesis given 
a previous likelihood estimate and additional observations. Suppose 1 2, , , NH H H
represent mutually exclusive and exhaustive hypotheses that can explain the 
observation O , then we have 

( ) ( ) ( )
( ) ( )

1

|
|

|

i i
i N

k k
k

P O H P H
P H O

P O H P H
=

= (8.47)

where ( )|iP H O  is the a posteriori probability of hypothesis iH being true given 
evidence O , ( )iP H the a priori probability of hypothesis iH being true, and 

( )| iP O H  the probability of observing evidence O given that iH is true. In 
contrast to the classical inference method, the Bayesian method provides a way of 
deriving the probability of a hypothesis being true given the observation. This 
formulation allows the incorporation of a priori knowledge about the likelihood of 
the hypothesis and the ability to use subjective probabilities for a priori
probabilities for hypotheses when the exact probability density function is not 
available. In Chapter 10, we will provide more detailed discussion on how to use 
Bayesian inferencing for BSN applications.

One of the main issues related to Bayesian inferencing is that it requires 
competing hypotheses being mutually exclusive. In real life, this is not always 
possible. For humans, we generally do not assign evidence to a set of mutually 
exclusive and exhaustive hypotheses. Instead, we tend to assign our belief to 
combinations of hypotheses, or propositions. One important fact to note here is that 
propositions may include overlapping or even conflicting hypotheses. Based on 
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Activity Index

Figure 8.8 Accelerometer readings from an office activity sequence used for 
feature selection and the corresponding Isomap embedding result showing the 
separation of different activity classes. (See colour insert.) 
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this, Shafer and Dempster provided a generalisation of Bayesian theory that could 
use probability intervals and uncertainty intervals for determining the likelihood of 
hypotheses based on multiple evidence [68-71]. In Dempster-Shafer’s method, 
evidence is assigned to both single and general propositions and it uses the concept 
of a probability mass to represent assigned evidence. When the probability masses 
are assigned only to an exhaustive and mutually exclusive set of elementary 
propositions, then the Dempster-Shafer’s approach is identical to the Bayesian 
method. The key advantage of the Dempster-Shafer’s method is its ability to 
establish a general level of uncertainty, and thus provides a means of accounting for 
possible unknown causes of the observed data. For BSN technology, this is clearly 
an advantage, as many of the observed events may not have well defined causes.  

Other techniques for decision level fusion are based on heuristics. For example, 
the voting sensor fusion method imitates voting as a means for human decision-
making. It combines detection and classification declarations from multiple sensors 
by treating each sensor declaration as a vote, and the voting process may use 
majority, plurality, or decision-tree rules. Additional methods include ordinal 
ranking, pair-wise ranking, and Q-sort which have been used extensively in 
assessing the psychometric process by which a human group achieves consensus 
[20]. To address some of the drawbacks in conventional rule-based schemes, fuzzy 
logic has also been used extensively to accommodate imprecise states or variables. 
In this book, however, we will mainly concentrate on the use of Bayesian Inference 
for practical applications of BSN technology as it provides the basis for 
understanding some of the advanced techniques in decision-level sensor fusion, 
including the generalised evidence processing method as proposed by Thomopoulos 
for addressing the basic assumptions regarding the assignment of evidence to 
hypotheses or propositions [2]. 

8.7  Conclusions 

In this chapter, we have presented the basic concept of multi-sensor data fusion and 
its implementation at data, feature and decision levels. In essence, sensor fusion is 
analogous to the sensing and cognitive process used by humans to integrate data 
from different sources. The advantages of effective sensor fusion include improved 
SNR, enhanced robustness and reliability in the event of sensor failure, extended 
parameter coverage, improved resolution, precision, confidence, hypothesis 
discrimination and reduced uncertainty.  

In general, sensor replication imposes the problem of data integration. For 
multi-sensor data fusion, it is usually assumed that communication, storage, and 
processing systems are reliable and the research focus is placed on different fusion 
algorithms for integrating data from either homogeneous or heterogeneous data 
[10]. Research concerning general wireless networks, on the other hand, assumes 
that the input data is generally in good quality and sources of error are originated 
from faults in communication and processing systems.  

For direct data fusion, we have mainly concentrated on two examples that are 
useful for sensor arrays and blind source recovery. In general, the use of direct data 
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fusion can be ad hoc and it depends on the application requirement one may have. 
One of the main applications of direct data fusion is for multi-sensor calibration. 
Calibration in general refers to the process of correcting systematic errors or bias in 
sensor readings. It has also been used in reference to the procedure by which the 
raw outputs of the sensors are mapped to standardised units. Traditionally, 
calibration is done during production time and recalibration is necessary after an 
interval for most sensors, as factors such as aging, decay and damage can have a 
detrimental effect on the accuracy of the readings. Frequent recalibration of large-
scale sensor networks can be problematic for pervasive sensing environments due 
to the number of sensors involved. For acceleration sensors, calibration is necessary 
if they are to be used collaboratively. For example, two orthogonally mounted two-
axes accelerometers are often used for providing three-axes acceleration 
measurement [72, 73]. Furthermore, MEMS-based accelerometers are usually not 
calibrated after production and the sensors can have a sensitivity and offset bias on 
each of their axes.   

In this chapter, we have dedicated a significant amount of space on feature-level 
data fusion because this is one of the most important yet difficult levels of sensor 
fusion. In general, a feature-based classifier consists of two major components that 
include feature selection and classification. The goal of defining feature is to 
preserve the class-discriminative information of the data while ignoring information 
that is irrelevant. Once a feature is identified, it defines a transformation that maps 
directly sensed data to the feature space, which typically has a lower dimensionality 
because of the inherent data abstraction involved [74]. For BSNs, effective sensor 
fusion and statistical feature reduction is crucial to wireless sensor arrays for both 
built-in redundancies and tissue heterogeneity.  

One of the main theoretical components of the chapter is the development of a 
filter-based algorithm for feature selection based on Bayesian theory. We have 
demonstrated the relationship between conditional independence and ideal 
inference performance, which is described by the ROC curve. We have shown that 
adding and removing an irrelevant feature will not change the associated AUC. This 
property, together with the monotonic property of the AUC, defines a theoretical 
framework that is equivalent to the axiomatic system, consisting of decomposition, 
weak union and contraction properties [67], for probabilistic dependencies. Based 
on this framework, the proposed algorithm is designed to provide an accurate, 
robust and fast feature selection method. The algorithm has shown promising 
strengths in identifying irrelevant features and improving the accuracy of the 
classifiers. By using both artificial and real-world datasets for accuracy assessment, 
we also illustrated the roles of prior and likelihood probabilities in the filter 
selection.

For a specific induction algorithm, wrapper selection usually achieves a better 
performance than its filter counterparts in terms of accuracy. However, filter 
selection is usually faster than wrapper selection, and therefore can serve as a pre-
processing step for a wrapper-based method. On the other hand, filter selection 
provides a more accurate description of the intrinsic structure of an information 
system, since it is not designed to cater for the bias associated with a specific 
classifier.
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In feature selection, we have attempted to reduce the number of selected 
features and achieve a high value of AUC. This is a dilemma in practice since the 
AUC is a monotonically increasing function. Given a small training dataset, a high 
AUC with a large number of selected features could result in over-fitting. 
Determining the optimal balance is theoretically and practically important. Further 
investigation is needed to determine the best way to take the factors, such as 
misclassification cost information and the standard error of the AUC [75], into 
consideration.

For direct data and feature level fusion, we have omitted in this chapter detailed 
discussion about the use of neural networks. The use of neural networks is in fact 
crucial to the practical deployment of BSNs due to its potential for the direct 
hardware implementation of some of the sensor fusion and classification 
algorithms. This is useful for implementing low-power processing at the source of 
the sensing environment in order to provide in situ data processing and abstraction.  

In the next chapter, we will provide a detailed explanation of the neural 
networks approach for context-aware sensing and outline the strength of SOMs for 
effective activity recognition. It is also worth noting that in terms of decision-level 
sensor fusion, we have only briefly outlined some of the common techniques used 
without going into extensive details of the techniques. This is because once the data 
abstraction is reached to this level, the techniques used for BSNs are effectively the 
same as many other pattern recognition and machine learning techniques, and there 
is an extensive coverage in the literature of this area. We will however, in Chapter 
10, provide a comprehensive analysis of the use of Bayesian inferencing technique 
for providing an autonomic sensing environment for BSNs.  

Finally, for readers that are new to the field of machine learning and pattern 
recognition, it is important to differentiate the notion of dimensionality reduction 
and feature selection. For dimensionality reduction, the independent variables that 
account for most variability within the data are extracted during the processing 
stage. As only intrinsic features are preserved, dimensionality reduction may lead to 
better understanding and classification of the data. For feature selection, however, 
we are mainly concerned with determining the optimum features both in terms of 
the number of sensing channels used, and the relevant feature extraction algorithms 
for effective separation of different events or episodes.  

For BSN applications, dimensionality reduction is therefore mainly a post-
processing step for re-projecting the data onto a low dimensional space that 
preserves the internal structure of the data whilst revealing its intrinsic pattern 
separations. Feature selection, however, is generally used for determining which 
sensors to be used and how they should be placed on the body, given a set of events 
or episodes to be monitored. The method is therefore mainly used for determining 
the sensor architecture with minimal power consumption and data bandwidth 
during practical deployment of BSNs.   



8. Multi-Sensor Fusion       281

References 

1. Hernandez A, Carrault G, Mora F, Thoraval L, Passariello G, Schleich JM. 
Multisensor fusion for atrial and ventricular activity detection in coronary care 
monitoring. IEEE Transactions on Biomedical Engineering 1999; 
46(10):1186-1190. 

2. Thomopoulos SCA. Sensor integration and data fusion. Journal of Robotics 
Systems 1990; 7:337-372. 

3. Hall DL. Handbook of multisensor data fusion. Boca Raton: CRC Press, 2001. 
4. Esteban J, Starr A, Willetts R, Hannah P, Bryanston-Cross P. A review of data 

fusion models and architectures: towards engineering guidelines. Neural 
Computing and Applications 2005. 

5. White FE. Data fusion lexicon. Joint Directors of Laboratories, Technical 
Panel for C3, Data Fusion Sub-Panel Naval Ocean Systems Center, San Diego, 
1991. 

6. Luo RC, Kay MG. Multisensor integration and fusion in intelligent systems. 
IEEE Transactions on Systems, Man and Cybernetics 1989; 19(5):901-931. 

7. Sadjadi FA. Selected papers on sensor and data fusion. SPIE Milestone, SPIE 
Optical Engineering Press, 1996. 

8. Brooks RR, Iyengar SS. Multi-sensor fusion: fundamentals and applications 
with software. Upper Saddle River, New Jersey: Prentice Hall, 1998. 

9. Luo RC, Yih C-C, Su KL. Multisensor fusion and integration: approaches, 
applications, and future research directions. IEEE Sensors Journal 2002; 
2(2):107-119. 

10. Parhami B. Multi-sensor data fusion and reliable multi-channel computation: 
unifying concepts and techniques. In: Proceedings of the Twenty-Ninth 
Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 
California, 1995; 1:745-749. 

11. Unser M, Eden M. Weighted averaging of a set of noisy images for maximum 
signal-to-noise ratio. IEEE Transactions on Acoustics, Speech, and Signal 
Processing 1990; 38(5):890-895. 

12. Cichocki A, Amari S-I. Adaptive blind signal and image processing: learning 
algorithms and applications. John Wiley, 2002. 

13. Eriksson J, Koivunen V. Identifiability, separability, and uniqueness of linear 
ICA models. IEEE Signal Processing Letters 2004; 11(7):601-604. 

14. Bell AJ, Sejnowski TJ. An information maximisation approach to blind 
separation and blind deconvolution. Neural Computation 1995; 7(6):1004-
1034. 

15. Lee T-W, Girolami M, Sejnowski TJ. Independent component analysis using 
an extended infomax algorithm for mixed subgaussian and supergaussian 
sources. Neural Computation 1999; 11(2):417-441. 

16. Herault J, Jutten C. Space or time adaptive signal processing by neural 
network models. In: Proceedings of Neural Networks for Computing, 
Snowbird, UT, 1986; 151:207-211. 

17. Comon P. Independent component analysis, a new concept? Signal Processing
1994; 36(3):287-314. 



282       Body Sensor Networks 

18. Hyvarinen A, Karhunen J, Oja E. Independent component analysis. John 
Wiley and Sons, 2001. 

19. Boyd JP. Chebyshev and Fourier spectral methods, 1st ed. Springer-Verlag, 
1989. 

20. Hall DL, McMullen AHS. Mathematical techniques in multisensor data fusion, 
2nd ed. Boston: Artech House, 2004. 

21. Aha D, Kibler D, Albert M. Instance based learning algorithms. Machine 
Learning 1991; 6:37-66. 

22. Mitchell T. Machine learning. New York: McGraw Hill, 1997. 
23. Cover TM, Hart PE. Nearest neighbour pattern classification. IEEE 

Transactions on Information Theory 1967; 13(1):21-27. 
24. Parzen E. On estimation of a probability density function and mode. The 

Annals of Mathematical Statistics 1962; 33(3):1065-1076. 
25. MacQueen B. Some methods for classification and analysis of multivariate 

observations. In: Proceedings of the Fifth Berkeley Symposium on 
Mathematical Statistics and Probability 1967; 1:281-297. 

26. Ball GH, Hall DJ. ISODATA, an iterative method of multivariate analysis and 
pattern classification. In: Proceedings of the International Federation of 
Information Processing Societies Congress 1965. 

27. Gowda KC, Krishna G. Agglomerative clustering using the concept of mutual 
nearest neighbourhood. Pattern Recognition 1978; 10(2):105-112. 

28. Dhillon I, Modha D. A data clustering algorithm on distributed memory 
multiprocessor. In: Proceedings of the ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, Large-scale Parallel 
KDD Systems Workshop 1999; 245-260. 

29. Friedman M, Kandel A. Introduction to pattern recognition: statistical, 
structural, neural and fuzzy logic approaches. London: Imperial College Press, 
1999. 

30. Bezdek JC. Pattern recognition with fuzzy objective function algorithms. New 
York: Plenum Press, 1981. 

31. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression 
trees. Belmont, California: Wadsworth International Group, 1984. 

32. Quinlan JR. C4.5: Programs for machine learning. San Mateo, California: 
Morgan Kaufmann Publishers, 1993. 

33. Vapnik V. The nature of statistical learning theory. Berlin: Springer-Verlag, 
1995. 

34. Cristianini N, Shawe-Taylor J. An introduction to support vector machines. 
Cambridge University Press, 2000. 

35. Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995; 
20(3):273-297. 

36. Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: a tutorial. 
Computer 1996; 29(3):31-44. 

37. Kohonen T. Self-organising maps. Springer Series in Information Sciences, 
Berlin: Springer-Verlag, 1995. 



8. Multi-Sensor Fusion       283

38. Carreira-Perpinan MA. Continous latent variable models for dimensionality 
reduction and sequential data reconstruction. University of Sheffield, PhD 
Thesis, 2001. 

39. Duda RO, Hart PE. Pattern classification and scene analysis. New York: 
Wiley-Interscience, 1973. 

40. Hinton GE, Revow M, Dayan P. Recognizing handwritten digits using 
mixtures of linear models. Advances in Neural Information Processing 
Systems 1995; 7:1015-1022. 

41. Bregler C, Omoundro SM. Nonlinear image interpolation using manifold 
learning. Advances in Neural Information Processing Systems 1995; 7:973-
980. 

42. Kohonen T. Self-organization and associative memory, 2nd ed. Berlin: 
Springer-Verlag, 1987. 

43. Bishop CM, Svensen M, Williams CKI. The generative topographic mapping. 
Neural Computation 1998; 10(1):215-234. 

44. Cox TF, Cox MA. Multidimensional scaling, 2nd ed. London: Chapman & 
Hall, 2001. 

45. Steyvers M. Encyclopedia of cognitive science. London: Nature Publishing 
Group, 2002. 

46. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear 
embedding. Science 2000; 290(5500):2323-2326. 

47. Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for 
nonlinear dimensionality reduction. Science 2000; 290(5500):2319-2323. 

48. Blum AL, Langley P. Selection of relevant features and examples in machine 
learning. Artificial Intelligence 1997; 97(1-2):245-271. 

49. Kohavi R, John GH. Wrappers for feature subset selection. Artificial 
Intelligence 1997; 97(1-2):273-324. 

50. John GH, Kohavi R, Pfleger K. Irrelevant features and the subset selection 
problem. In: Proceedings of the Eleventh International Conference on 
Machine Learning, New Brunswick, NJ, 1994; 121-129. 

51. Koller D, Sahami M. Towards optimal feature selection. In: Proceedings of 
the Thirteenth International Conference on Machine Learning, Bari, Italy, 
1996; 284-292. 

52. Kira K, Rendell LA. The feature selection problem: traditional methods and a 
new algorithm. In: Proceedings of the Ninth National Conference on Artificial 
Intelligence, Cambridge, Massachusetts, 1992; 129-134. 

53. Almuallim H, Dietterich TG. Learning with many features. In: Proceedings of 
the Ninth National Conference on Artificial Intelligence, Cambridge, 
Massachusetts, 1992; 547-552. 

54. Dash M, Liu H. Feature selection for classification. Intelligent Data Analysis
1997; 1(3):131-156. 

55. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation 
and model selection. In: Proceedings of the Fourteenth International Joint 
Conference on Artificial Intelligence, San Mateo, CA, 1995; 1137-1143. 

56. Pudil P, Novovicoca J, Kittler J. Floating search methods in feature selection. 
Pattern Recognition Letters 1994; 15(11):1119-1125. 



284       Body Sensor Networks 

57. Jain A, Zongker D. Feature selection: evaluation, application, and small 
sample performance. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 1997; 19(2):153-158. 

58. Pudil P, Novovicova J, Kittler J. Simultaneous learning of decision rules and 
important attributes for classification problems in image analysis. Image and 
Vision Computing 1994; 12:193-198. 

59. Egan JP. Signal detection theory and ROC analysis. New York: Academic 
Press, 1975. 

60. Van-Trees HL. Detection estimation and modulation theory. New York: 
Wiley and Sons, 1971. 

61. Scott MJJ, Niranjan M, Prager RW. Parcel: feature subset selection in variable 
cost domains. Department of Engineering, University of Cambridge, England, 
Technical Report, CUED/F-INFENG/TR, 1998. 

62. Srinivasan A. Note on the location of optimal classifiers in n-dimensional 
ROC space. Oxford University Computing Laboratory, Oxford, England, 
Technical Report, PRG-TR-2-99, 1999. 

63. Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1945; 
1:80-83. 

64. Hand DJ. Construction and assessment of classification rules. Chichester, 
England: John Wiley and Sons, 1997. 

65. Coetzee F, Lawrence S, Giles CL. Bayesian classification and feature 
selection from finite data sets. In: Proceedings of the Sixth Conference on 
Uncertainty in Artificial Intelligence, Stanford, CA, 2000; 89-97. 

66. Singh M, Provan GM. Efficient learning of selective Bayesian network 
classifiers. In: Proceedings of the Thirteenth International Conference on 
Machine Learning, Bari, Italy, 1996; 453-461. 

67. Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible 
inference. San Mateo, CA: Morgan Kaufmann, 1988. 

68. Dempster AP. A generalization of Bayesian inference. Journal of the Royal 
Statistical Society 1968; 30:205-247. 

69. Shafer G. A mathematical theory of evidence. Princeton University Press,  
1976. 

70. Shafer G. Perspectives on the theory and practice of belief functions. 
International Journal of Approximate Reasoning 1990; 4(5-6):323-362. 

71. Shafer G. Readings in uncertain reasoning. San Mateo, California: Morgan 
Kaufmann, 1990. 

72. Krohn A, Beigl M, Decker C, Kochendorfer U, Robinson P, Zimmer T. 
Inexpensive and automatic calibration for acceleration sensors. In:
Proceedings of the Second International Symposium of Ubiquitous 
Computing Systems, Tokyo, Japan, 2004; Springer LNCS 3598:245-258. 

73. Lukowicz P, Junker H, Troster G. Automatic calibration of body worn 
acceleration sensors. In: Proceedings of the Second International Pervasive 
Computing Conference, Vienna, Austria, 2004; 176-181. 

74. Liu J, Chang K-C. Feature-based target recognition with a Bayesian network. 
Optical Engineering 1996; 35(3):701-707. 



8. Multi-Sensor Fusion       285

75. Hanley JA, McNeil BJ. The meaning and use of the area under the receiver 
operating characteristic (ROC) curve. Diagnostic Radiology 1982; 143:29-36. 



9
Context-Aware Sensing 

 Surapa Thiemjarus and Guang-Zhong Yang 

9.1 Introduction 

In recent years, there have been considerable interests in context-aware sensing for 
pervasive computing. Context can be defined as “the circumstances in which an 
event occurs” and this concept has been successfully used in information processing 
for over fifty years, particularly for Natural Language Processing (NLP) and 
Human Computer Interaction (HCI). The popularity of the context-aware 
architectures is due to the increasingly ubiquitous nature of the sensors as well as 
the diversity of the environment under which the sensed signals are collected. To 
understand the intrinsic characteristics of the sensed signal and determine how 
BSNs should react to different events, the contextual information is essential to the 
adaptation of the monitoring device so as to provide more intelligent support to the 
users.  

One of the earliest examples of context-aware computing was the Active Badge 
from the Olivetti Research Lab in 1992 [1], and the general term “context-aware
computing” was first introduced by Schilit and Theimer in 1994 [2]. In this work, 
they described three important aspects of context-awareness: where you are, who 
you are with, and what resources are nearby. In other words, they are mainly 
concerned with location and identity information for context-aware computing. In a 
mobile distributed computing system named PARCTAB, Schilit et al considered 
four different categories of context-aware applications, which included proximate 
selection, automatic contextual reconfiguration, commands, and context-triggered 
action [3]. Proximate selection provides an interface based on the location or 
capacity of objects, so that located objects are highlighted or made easier to choose 
from. Reconfiguration, on the other hand, is the process of adding new components, 
removing existing components or suggesting the connection between components. 
In the early work of context-aware applications, context triggered actions were 
simple IF-THEN rules used to specify how the system should adapt to changing 
environment and user interactions.  

Thus far, there has been extensive effort in formally categorising the different 
features of context-aware applications. Whilst the early taxonomy has aimed at 
identifying different classes of context-aware applications, Pascoe [4] concentrated 
on the following considerations:  
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• Contextual sensing: the ability to detect contextual information 
and present it to the user to augment the user’s sensory system; 

• Contextual adaptation: the ability to execute or modify a service 
automatically based on the current context; 

• Contextual resource discovery: allows context-aware applications 
to locate and exploit relevant resources and services; and 

• Contextual augmentation: the ability to associate digital data with 
the user’s context in such a way that a user can view the data 
when he is in the associated context. 

It is evident that some of the definitions used above are equivalent to the taxonomy 
proposed by Schilit et al. For example, contextual sensing can be mapped to 
Schilit’s proximity selection, contextual adaptation is similar to context triggered 
action, and contextual resource discovery can be regarded as automatic contextual 
reconfiguration. By considering different categorisations of both context and 
context-aware applications, Dey and Abowd defined context as [5]: 

“Any information that can be used to characterise the situation of an 
entity. An entity is a person, place, or object that is considered 
relevant to the interaction between a user and an application, 
including the user and applications themselves.”

In addition to location and identity, activity and time were added to their context 
categorisation, and context-awareness was defined as:   

“A system is context-aware if it uses context to provide relevant 
information and/or services to the user, where relevancy depends on 
the user’s task.”  

From these studies, the main features for context-aware applications can be 
considered as the presentation of information and services to a user according to the 
current context, the automatic execution of a service, and the tagging of context to 
information for later retrieval. The general definition of a context-aware system is 
therefore related to the issue of whether the system can extract, interpret and use 
contextual information and adapt its functionality to the current context of use. 
Table 9.1 illustrates some of the main considerations for designing context-aware 
systems [6, 7].   

For the purpose of BSNs, the main emphasis of a context-aware design is 
concerned with the interpretation of physical and biochemical signals acquired from 
both wearable and implantable sensors and their association with the ambient 
environment. The contextual information is therefore mainly focussed on the user’s 
activity, physiological states, and the physical environment around the user. In this 
case, the environmental context includes location, proximity, time, social 
interaction, and connectivity information of the healthcare environment. The user-
centred context, on the other hand, includes physical action, cognitive/mental 
activities, and affective states.  



9. Context-Aware Sensing       289

Table 9.1 Considerations of context-aware systems.  

Main Considerations 

• Identity, e.g. user identification 
• Spatial information, e.g. location, orientation, speed and acceleration 
• Temporal information, e.g. time of the day, date and season of the year
• Environmental information, e.g. temperature, air quality, light or noise 

levels
• Social interaction, e.g. who you are with and people that are nearby
• Resources that are nearby, e.g. accessible devices and hosts
• Availability of resources, e.g. battery, display, network, and bandwidth
• Physiological measurements, e.g. blood pressure, heart rate, respiration 

rate, tone of voice, and emotions
• Activity, e.g. talking, reading, walking and running
• Planned activity, e.g. schedules and agenda

The Five W’s of Context

• Who   –   the identity of the user or other people in the environment 
• What   –   human activity and interaction in current systems  
• Where  –  the environment within which the activity is taking place  
• When   –  timestamp of the capture records 
• Why   –  person’s affective states and intension

From an information processing point of view, context can be regarded as 
different levels of details linked to physical and perceptual representations. The 
description of a user’s cognitive activities is generally at an abstract level, whereas 
the recognition of the physical status of a subject is more descriptive and mainly 
data-driven. For example, movements are the most elementary primitives for 
motion recognition, which only require local measurements. Activities, on the other 
hand, involve sequences of movements and require detailed motion modelling. 
Finally, action is at the highest level of motion understanding which requires the 
interpretation of the context (e.g. a set of temporal constraints on the relationship 
between motions) and the interaction of the user with the environment [8]. 

9.2 Application Scenarios 

The above definition outlines the general concepts and considerations for context-
aware sensing. The practical application of the method, however, is still in its 
infancy and some of the early techniques only involve simple measures such as 
location for contextual interpretation. These systems include a number of office, 
tourist, and memory aids such as the Dynamic Ubiquitous Mobile Meeting Board
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(DUMMBO) [9], PARCTAB [3], Cyberguide [10], Forget-Me-Not [11], Remem-
brance Agent [12], Stick-e Notes [13], and the Olivettit Research Lab’s Active 
Badge [14] mentioned earlier.  

Whilst context-awareness in mobile computing is mainly concerned with the 
adaptation of the application services, its use in BSNs is mainly focussed on how to 
capture signals under varying physical and environmental conditions. This is 
because there is a growing need clinically for continuous patient monitoring under 
their natural physiological state so that transient but life-threatening abnormalities 
can be reliably detected or predicted. For example, Someren et al [15] illustrated 
the potential use of motion signal for analysing the effect of medication intake by 
calculating the average responses during different times of the day for patients with 
Parkinson's disease. These profiles were then used to evaluate the pharmacological 
interventions. Bhattacharya et al [16] investigated the heart rate, oxygen uptake and 
acceleration profiles during exercise to study the relationship between body 
movement/acceleration and metabolic rates.  

The contextual information has also been used to improve the diagnosis 
accuracy of the acquired physiological signals. This is because similar sensory 
signals can be interpreted differently depending on the current activities of the 
patient. For instance, the underlying cause of rapid heartbeats and degenerated ECG 
can be a result of the vigorous movements of the patient during exercising rather 
than a genuine cardiac episode. For these reasons, motion signals acquired in situ 
have been used for recovering biosensor signals corrupted by motion artefacts [17].  

Currently, most automatic activity recognition in pervasive sensing is based on 
the use of motion sensors [18-24], and a record of the daily activities of the patient 
is used to provide an indication of the general wellbeing of the subject. For patients 
with disabilities, for example, monitoring tasks that require more effort to 
accomplish can be used as an objective measure of their functional ability [25, 26]. 
Tognetti et al [27] demonstrated the use of limb gesture detection for post-stroke 
rehabilitation. The use of a wearable system for clinical management of individuals 
undergoing rehabilitation is attractive since it allows the recording of quantitative 
measurements in settings other than in hospitals or clinics. Existing research has 
also investigated the value of continuous patient monitoring for exploring the 
relationship between activity and disease progression, as demonstrated by the 
studies of Walker et al for rheumatoid arthritis [28] and others in detecting changes 
of posture and gait in patients with neuromuscular diseases and Parkinson’s disease 
[29-33]. Other sources of information such as acoustics can also be used for activity 
recognition [34]. 

Affective states of depression, anxiety and chronic anger have been shown to 
impede the immune system and they can potentially be used to assess stress, anger 
and other emotions that can influence health. Teicher [35] studied the correlations 
between different activity levels and psychiatric disorders. Myrtek and Brügner [36] 
investigated the perception of daily emotional events by assessing the correlation 
between physiological parameters such as heart rate, physical activity, and 
psychological parameters. Picard et al [37] described a recognition framework for 
detecting a range of emotional states including anger, hate, grief, platonic love, 
romantic love, joy and reverence based on signals from EMG, blood volume 
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pressure, skin conductance, and Hall-effect respiration sensors. For BSN 
applications, the emotional states and attention levels are all important contextual 
information to capture. An example commercial monitoring tool is the SenseWear 
Armband from BodyMedia [24], which can be worn on the upper arm of the subject 
to collect data wirelessly from a combination of sensors. Such data includes 
information about movement, heat flow, skin temperature, ambient temperature, 
and Galvanic Skin Response (GSR). 

The use of contextual information has also been used to develop more 
intelligent healthcare environments. Bardram [38] illustrated the general design 
principles for context-aware sensing in hospitals and the use of RFID tags for 
identifying patients and their surrounding clinical team and medical equipment. A 
context-aware pill container with fingerprint recognition has been proposed to 
ensure proper dose administration. For introducing context-awareness to BSNs, it is 
also possible to exploit much of the existing research in pervasive computing, 
particularly for indoor navigation and tracking [19, 39, 40]. Wearable sensors such 
as accelerometers, magnetometers, temperature and light sensors have been used 
extensively for location detection and tracking.  

Traditionally, the knowledge of the context of the user is acquired through self-
reporting based on diaries or questionnaires. This method is both time-consuming 
and unreliable, especially for the elderly and subjects with memory impairment. 
Another method of acquiring contextual information is through clinical observation 
but it requires specialised equipment and a dedicated laboratory set-up. In addition, 
measurements made in a clinic may not accurately reflect the patient’s behaviour in 
the normal home environment. With the current advances in sensor and wireless 
technology, it is now possible to provide ubiquitous monitoring of the subjects 
under their natural physiological status.  

9.3 Preprocessing for Context Sensing 

Context recognition can be formulated as a general pattern recognition process 
which consists of data acquisition, feature extraction, model construction and 
inference, and performance evaluation. Clustering and high-level inferencing 
techniques as described in Chapter 8 for multi-sensor fusion can all be applied to 
context recognition. Before reaching to the recognition stage, a number of signal 
processing issues related to context detection need to be addressed.  

9.3.1 Information Granularity 

For context sensing, we are generally more interested in temporal signal variations 
in the feature space, as the information derived from the instantaneous signal is 
usually limited. Short time window analysis is the simplest method for segmenting 
the input sequence. The basic idea is to divide the time-varying signal into 
meaningful small segments. This can be done by shifting and multiplying a window 
function of a chosen width, ,Ω  with the signal. The simplest window function has a 
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rectangular shape but other window functions can also be used to pre-emphasise 
certain parts of the signal. By the use of a shifting window, the signal can then be 
divided into a succession of windowed sequences called frames, which can be 
analysed individually. The resolution of the classification process is usually 
determined by how the feature vectors are constructed. If the window is shifted by a 
temporal length of L=1, a classification label will be assigned to each sample of the 
original signal. In most studies, L is set to be equal to .Ω In this case, the derived 
frames do not overlap and some temporal information may be lost. Signals can also 
be segmented into varying lengths according to their temporal characteristics. This 
allows the extraction of information from the entire episode of the signal, which 
tends to provide a more robust result for the classification process. In practice, 
however, the performance of this approach is highly dependent on the accuracy of 
the segmentation algorithm, and in many cases the boundary between episodes is 
difficult to define.  

In addition to simple window-based statistics, other signal characteristics such 
as peak locations, pulse repetition intervals, and zero crossing rates can also be used 
[41, 42]. In the peak-based feature extraction method, the ‘area of activity’ is first 
detected by applying a thresholding scheme on the running variance followed by 
peak localisation. The drawback of the method is that the peak information is not 
always available and tracking peaks in multiple dimensions is difficult. A more 
systematic approach to extracting localised signal features is the use of Discrete
Wavelet Transform (DWT) and it has been applied successfully to a number of 
context-aware applications [43]. The choice of appropriate mother wavelets and the 
corresponding scales for different types of activities, however, remains an active 
research area.  

Recently, Loosli et al [44] proposed an interesting online nonparametric signal 
segmentation technique with one-class Support Vector Machines (SVMs) to detect 
context changes. The technique is based on the concept of change-detection in 
signal processing [45], and the nonparametric requirement is achieved by the kernel 
learning method used in SVMs. An one-class SVM is trained by past data to first 
learn the current state and then examine the subsequent data sequence. A change in 
signal characteristics is detected when the proportion of misclassification exceeds a 
given threshold. The method allows decomposition of a multidimensional time 
series into stationary (or weakly stationary) segments, thus allowing feature 
extraction to be specific to each context segment and adaptive to context transitions.  

9.3.2 Sources of Signal Variations 

In context-aware sensing, the acquired signals can be affected by other sources of 
variations that are detrimental to the classification process. To enhance the overall 
system sensitivity and specificity, these variations must be carefully considered. 
Table 9.2 outlines several possible sources of variations that may be encountered by 
BSN applications.
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Table 9.2 Sources of variation for context sensors.

Sources of Variations 
Noise Sensor noise, node failure, and motion artefact can 

introduce significant errors to data inferencing 
results.

Indirect motion Indirect motion such as those due to car rides, use 
of wheelchairs or riding an elevator can contribute 
to movements without actual physical activities 
[46]. 

Intra- and inter-subject 
variability 

The difference in anatomy is a major source of 
subject specific variations. Motion characteristics 
can have significant inter- and intra-subject 
variabilities and this must be taken into account 
when analysing the motion data. Furthermore, the 
behaviour of individuals can change due to their 
emotional status and the surrounding environment.  

Variation between 
sensors

Sensors of the same type can be different in terms 
of characteristic sensitivity, offset, and bias values. 
These differences can also change over time due to 
thermal drift [47]. Other subject specific factors 
such as sensor placement can also introduce sensor 
variations [46].  

In general, the above variations can be handled either during preprocessing or 
subsequent data classification stages. In preprocessing, blind source separation, 
such as the ICA algorithm discussed in Chapter 8, can be used to separate the signal 
components generated by the real sources. In the case of node failure, the missing 
data can be assigned with the most common values in the training samples or 
according to a prescribed probability distribution for assigning the missing feature 
attribute. Finally, systematic sensor variations can be alleviated by effective 
online/offline sensor calibration. 

9.3.3 Data Normalisation 

To account for different ranges of the signal collected, direct data normalisation can 
be applied. The simplest version of data normalisation is to shift the signal baseline 
to the same mean and then scale it by its variance so that they share the same data 
range. This allows a proportional influence of all features whilst standardising the 
dataset at the same time. Translation or phase shift along the time axis is often 
applied to eliminate signal drift, whereas scaling or time normalisation is applied to 
cater for signals acquired with different sampling rates. It is worth noting that many 
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of the data normalisation techniques used so far are ad hoc and require extensive 
empirical judgements.    

As an example, Picard et al used several methods for handling day-to-day 
variations in their affective sensing framework [37]. These include the use of day 
matrix, baseline matrix, and day-independent features for the analysis of affective 
physiological features. For the day matrix, a transform is obtained by applying the 
Fisher’s algorithm to signals appended with a day-dependent vector. The Fisher’s 
algorithm normalises features in the same class so that intraclass difference is 
minimised whilst interclass differences being maintained. The baseline matrix, on 
the other hand, is based on the subtraction of the mean of the reference class 
(baseline) from the respective features of the remaining classes of the same day.   

9.4 Context Recognition Techniques 

Thus far, most of the context recognition techniques are based on motion sensors 
and commercially available physiological sensors such as skin conductance, heart 
rate, and respiratory sensors. Table 9.3 illustrates several examples of the context 
recognition applications that have been developed in recent years. In this table, we 
have also listed out the corresponding processing models that have been used. It can 
be seen that many of the sensor fusion techniques described in Chapter 8 are 
applicable for this purpose. In this chapter, we will mainly focus on two important 
approaches for context-aware sensing: Hidden Markov Models (HMMs) and 
Artificial Neural Networks (ANNs) – particularly the use of Self-Organising Maps
(SOMs). 

9.4.1  Hidden Markov Models (HMMs) 

A HMM consists of a finite set of states, and the transition between states is 
governed by a set of probabilities called transition probabilities. In a particular 
state, an outcome or observation can be generated according to the associated 
probability distribution. It is only the outcome, not the state itself that is visible, 
hence the name Hidden Markov Models because the states are hidden from the 
external world. The basic theory of HMM was published in a series of classic 
papers by Baum and his colleagues [48] in the late 1960s and since then it has been 
applied to a wide range of speech processing applications [49, 50]. The key benefit 
of a HMM is its ability to model temporal statistics of the data by introducing a 
discrete hidden variable that undergoes a transition from one time step to the next 
according to a stochastic transition matrix. At each time step, the HMM emits 
symbols that are dependent on the current state of the hidden variable.   
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In order to understand HMMs, it is necessary to describe the basic principles of 
Markov chains. A Markov chain, or first-order Markov model, is a discrete-time 
stochastic process with a deterministic output function. By describing the evolution 
of states based on the Markov property (i.e. the probability distribution of the 
current state depends only on the intermediate previous state and the associated 
action), it provides a compact representation of all possible paths through the state 
space. A Markov chain can be described with a triple ( ), ,QΘ = A , where Q is a 
finite set of K states, A is a matrix of K K×  transition probabilities between the 
states, and ( ){ }

1

K

i i
p

=
= q is a prior probability distribution over the states Q

indicating the likelihood of a state Q∈q  being the staring point. The prior 
distribution can sometimes be replaced by the non-emitting (entry and exit) state. In 
general, the probability of any state sequence [ ]1 2, ,...,T T=Q q q q  can be defined as: 

( ) ( ) ( )1 1 2 1
2

| | | , ,..., ,
T

T t t t
t

p p p − −
=

Θ = Θ Θ∏Q q q q q q (9.1)

Based on the first-order Markov assumption, the joint probability ( )|Tp ΘQ can be 
redefined as a product of the probability of the first state and the probabilities of 
subsequent transitions in the sequence, i.e.,

( ) ( ) ( )1 1
2

| | | ,
T

T t t
t

p p p −
=

Θ = Θ Θ∏Q q q q (9.2)

where ( )1 |p Θq  is the initial probability of state 1q  and ( )1| ,t tp − Θq q  is the 
probability of a transition from state 1t−q  to tq . The maximum likelihood 
estimation of the transition probabilities is defined as: 

( ) 1
1

1

Number of transitions from state  to 
|

Number of transitions from state 
t t

t t
t

p −
−

−

=
q qq q

q
(9.3)

In context-aware sensing, Markov chains are often used in the supervising layer to 
extract information about context transitions [23, 24]. 

The HMM is an extension of the Markov model in which the observation itself 
is described by a probabilistic output function, but as mentioned earlier, the state 
sequence in this case is hidden. Each HMM approximates the likelihood that the 
model generates the observed data based on the assumptions that: a) the signal is 
stationary over a frame; b) current observations are statistically independent of the 
previous outputs (observations); and c) transition probabilities are constant (i.e.
independent of observations or previously visited states). A HMM can be defined as 
a pentuple ( ), , , ,Q XΘ = A B , where Q and X are sets of K (hidden) states and L
output symbols, respectively. In this definition, A represents the state transition 
probabilities, B is a K L×  output matrix containing the probabilities of emitting 
observation X∈x  while in state Q∈q , and  represents the initial state 
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distribution vector or indicates the non-emitting states. Given an observation 
sequence [ ]1 2, ,...,T T=X x x x  and model Θ , context recognition can be achieved by 
determining the best state sequence *

T Q∈Q  which maximises ( ), |T Tp ΘX Q , or 
equivalently:  

( ) ( )* arg max | , |
T

T T T T
Q

p p
∈

= Θ Θ
Q

Q X Q Q (9.4)

Since the realisation of tx  is assumed to be independent of the neighbouring states, 
the first term of (9.4) can be simplified as multiplications of the output density, i.e.,

( ) ( )
1

| , |
T

T T t t
t

p p
=

Θ = ∏X Q x q (9.5)

The second term of (9.4) is used to model the contextual information among 
states, which can be derived from a first- or higher-order Markov model. The 
probability of observing a HMM output string TX  is given by summing the 
contribution from all the possible state sequences T Q∈Q  such that  

( ) ( ) ( ) ( ) ( )1 1 1 1
2

| | | , | , | ,
T

T

T t t t t
Q t

p p p p p−
∈ =

Θ = Θ Θ Θ Θ∏
Q

X q x q q q x q (9.6)

This can be efficiently computed by recursively applying the probabilities of the 
partial state sequences and observations. The most important criterion used for 
estimating the HMM parameters is to maximise the likelihood of generating the 
training data in (9.6). The Viterbi algorithm and Baum-Welch re-estimation method 
are two of the most commonly used HMM training algorithms. The Viterbi method 
is a dynamic programming algorithm with which the total likelihood is estimated by 
the probability of the most likely state sequence *

TQ , i.e.,

( ) ( )*| , |T T Tp pΘ ≈ ΘX X Q (9.7)

From this, each observation vector can be assigned to exactly one emitting state, 
and the parameters of each output distribution can be estimated independently 
based the data segment(s) associated with the state. The Baum-Welch re-estimation 
algorithm, on the other hand, is based on the popular Expectation Maximisation 
(EM) method. At the E-step, soft alignment is made by estimating the probability of 
state occupation, whereas at the M-step, the transition probabilities and the output 
distribution parameters are re-estimated by using the probability of state 
occupation. At each iteration, an increase in likelihood is guaranteed. 

A common way to view a HMM is to regard it as a finite state machine as 
shown in Figure 9.1. A HMM can also be viewed as a simple version of a Dynamic 
Bayesian Network (DBN) with one discrete (unobserved) hidden node and one 
discrete or continuous observed node per time slice, as illustrated in Figure 9.2. 
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Figure 9.1 A standard HMM as a finite state machine where the shaded  
nodes denote an emitting state with output probability bi(xt) and the small dark 
nodes denote nonemitting (entry and exit) states. In this figure, arcs represent 
state transitions with probability aij.

This model provides a compact representation of the joint probability distribution 
and reveals the underlying independence assumptions among variables in the graph.   

To model the output probability distribution for each state in a continuous 
density HMM, it is common to use a Gaussian distribution with diagonal 
covariance to reduce the number of parameters required. The distribution of the 
real-world signal, however, can be non-Gaussian. To overcome this problem, the 
output distribution can be estimated by using a linear mixture of different models 
such as the popular mixture of Gaussians represented by the following weighted 
function:  

( ) ( ) ( )
1 1

; ,
M M

j t jm jm t jm t jm jm
m m

b b Nω ω
= =

= =x x x  (9.8) 

where M is the number of Gaussian components in a state, and jmω  is the 
component weight or prior that is summed to 1.  

Under the Bayesian network representation of HMMs, a general mixture 
distribution for ( ) ( )= | ,j t t tb p j= Θx x q assumes the existence of a hidden variable 
ω that determines the active mixture component. It follows that: 

( ) ( )

( ) ( )
1

1

| , , | ,

| , | , ,

                        

M

t t t t
m

M

t t t
m

p j p m j

p m j p m j

ω

ω ω

=

=

= Θ = = = Θ

= = = Θ = = Θ

x q x q

q x q
 (9.9) 

To illustrate how HMMs can be used for context detection, we present in Figure 
9.3 a simple example of activity detection through the use of a sensor glove 
mounted with an optical bending sensor and two accelerometers sampled at 50Hz 
[59]. The optical bending sensor was placed across the palm, whereas the two 
accelerometers were positioned on the back of the index finger and thumb, 
respectively. The dataset consists of six different activities including opening the 
door, turning on/off the tap, opening/closing the cupboard, making coffee, adding

xt

aij

( )i tb x

xt

aij

( )i tb x

aij

( )i tb x
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milk, and drinking coffee. In this simple example, we used six three-state HMMs 
with an ergodic fully-connected HMM topology. Baum-Welch re-estimation was 
used for model training and the output distribution associated with each state is 
modelled by a simple Gaussian distribution with diagonal covariance matrix so as 
to keep the number of parameters as small as possible. A total of seven data sets 
were acquired from the subject; one of which was used for model training and the 
remaining six were used for evaluating the accuracy of the algorithm.   

Figure 9.2 Bayesian network representations of HMMs, where circles denote 
continuous nodes or variables, and squares denote discrete nodes. Unshaded 
nodes are hidden nodes.  

Since the range of each sensor channel can be contrastingly different, the overall 
mean and standard deviation were used for data normalisation for each dataset so 
that all data shares the same mean and unit variance. Simple noise filtering was 
applied to the data, and for each channel we also calculated signal energy over a 
fixed window size of fifty samples. The raw signal and energy were concatenated to 
form a ten-dimensional vector for the five sensing channels involved. Figure 9.3 
illustrates the six different activity segments captured, and Table 9.4 summarises 
the overall accuracy of the HMM algorithm for the six test data sets used. In this 
table, rank n accuracy means the correct classification is among the first n highest 
likelihood models. 

Albeit being simple, the above example demonstrates some of the advantages of 
HMMs. The method has a sound statistical grounding and its parameter estimation 
can take into account different sources of uncertainty. Furthermore, it is modular 
and can be combined into larger models. In general, HMMs are relatively robust 
with regards to temporal changes and it is also possible to incorporate high-level 
domain knowledge. The disadvantages of the method, however, include the 
relatively strong assumptions made about the data and the amount of training data 
required due to the large number of parameters involved. Another issue related to 
HMMs are that their training involves maximising the observed probabilities for 
examples belonging to a certain class but it does not minimise the probability of 
observation of instances from other classes. In terms of performance, a HMM 

Continuous density HMM with  
Gaussian output 

Continuous density HMM with  
Gaussian mixture output 

xt xt+1 xt xt+1

qt qt+1

1tω +tω

qt qt+1

xtxt xt+1 xtxt xt+1

qtqt qt+1qt+1

1tω +tω

qtqt qt+1qt+1
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involves enumerating of all possible paths through the model. Although the search 
can be efficiently performed by using the token passing algorithm [60], it can be 
computationally expensive compared to other techniques. Despite these problems, 
HMMs remain an attractive technique for context-aware sensing.   
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Figure 9.3 Time series plot of a signal sequence obtained from the sensor 
glove. The six activities marked represent opening the door, turning on/off 
the tap, opening/closing the cupboard, making coffee, adding milk, and 
drinking coffee, respectively.  

Table 9.4 HMM classification results for the experiment shown in Figure 9.3. 

Class Rank 1 Accuracy Rank 2 Accuracy Rank 3 Accuracy 
C1 100% 100% 100% 
C2 100% 100% 100% 
C3 83.33% 83.33% 100% 
C4 33.33% 50% 100% 
C5 100% 100% 100% 
C6 83.33% 100% 100% 

Average 83.33% 88.89% 100% 
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9.4.2 Artificial Neural Networks (ANNs) 

For context sensing, the alternative approach of using ANNs offers several 
important features including nonlinearity (they are suitable for data which is 
inherently nonlinear), adaptivity (they can be easily retrained to deal with minor 
changes), evidential response (they can be designed to provide confidence for the 
decision made), and fault tolerance (their performance degrades gracefully under 
adverse operating conditions) [61]. Moreover, the relatively small number of 
operations involved in the combined learning and classification process makes the 
model particularly suited for a parallel, on-chip analogue implementation [62]. For 
a BSN, this means some of the processing steps involved can be performed locally 
on low-power, miniaturised sensor nodes so as to minimise the communication 
bandwidth required. This is particularly attractive for distributed inferencing.  

The underlying mechanism of an ANN is inspired by the neurobiological system 
of our brain. A neuron consists of a cell body called a soma which contains the 
nucleus, and a number of short, branching cellular extensions called dendrites. They 
form the main information receiving network for the neuron. The axon is a much 
finer, cable-like structure which carries nerve signals away from the neuron to 
connect with the dendrites and cell bodies of other neurons. The connection point is 
called a synapse. Neurons have only one axon, but this axon can undergo extensive 
branching, enabling communication with many target cells. Each neuron can 
receive, process and transmit electrochemical signals. Synapses can be either 
chemical or electrical. In an electrical synapse, the membranes of two neurons are 
continuous at tiny spots called gap-junctions, making the cells electrically 
contiguous. In the case of chemical synapses, neurotransmitters are released from a 
presynaptic neuron and dock with receptor proteins on the postsynaptic neuron. 
Such binding causes the shape of the protein to change and ion channels to open. 
The firing of a neuron depends on how many inputs it is receiving as well as the 
nature of each input signal (excitatory or inhibitory) at each synapse. The net result 
of these inputs determines whether the neuron will become excited, or depolarised, 
enough to fire an action potential and release neurotransmitter from its axon 
terminals.

The history of ANNs begins with the model of the biological neuron introduced 
by McCulloch and Pitts in 1943 [63]. The McCulloch-Pitts (MP) neuron is 
described as a linear threshold computing unit with multiple inputs and a single 
binary output. Each input ix  is connected to the thj neuron by a directed synaptic 
connection with weight ijw . The neuron is activated and returns value 1 when the 
sum of the weighted inputs exceeds a specified threshold jθ . Otherwise, the output 
value is 0. Mathematically, the response of an MP neuron can be written as: 

( )j ij i j
i

y f w x t θ= − (9.10)

where ( ) 1f x =  if 0x ≥ , otherwise ( ) 0f x = . In 1949, Hebb postulated the first 
rule for self-organised learning, which states that the effectiveness of a variable 
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synapse between two neurons is increased if the two interconnected neurons are 
activated at the same time [64]. Based on the McCulloch-Pitts model, the single-
layer perceptron was proposed by Rosenblatt in 1958 [65]. The model is considered 
as the first ANN for supervised learning. A perceptron is a neuron with adjustable 
weights iw , for i = 1, 2, …, d, and an externally applied threshold bias 0w . Table 
9.5 describes the procedure for learning the weights and threshold for a perceptron.  

Table 9.5 The perceptron learning algorithm. 

(a) Initialise the weights and threshold to small random values; 

(b) For each input vector, ( )tx  (t is the time step index): 
• Evaluate the output y of the neuron by applying the 

binary step activation function f to the linear 
combination of inputs and an externally applied bias;  

• Update the weights according to 
( ) ( ) ( ) ( )1t t y y tη ′+ = + −w w x

where the learning rate η  is a constant value 
between 0 and 1, and y′ is the desired output.  

The perceptron can be considered as the simplest kind of feed-forward neural 
network. This model can be generalised by simply replacing the activation function 
f with a more general nonlinear function. However, the perceptron can only deal 
with linearly separable patterns as long as a monotonic activation function is used. 
In 1969, Minsky and Papert [66] demonstrated that a single-layer perceptron was 
incapable of representing a linearly inseparable function such as the “exclusive or” 
(XOR). The postperceptron era began with the realisation that adding (hidden) 
layers to the network could yield significant computational versatility. This 
stimulated a revival of interest in ANNs especially for multilayered feed-forward 
structures.

One important type of ANN for context-aware sensing is the Self-Organising 
Map (SOM). SOM is a class of unsupervised competitive neural models with an 
organised geometrical structure of output neurons. It can be considered as a 
nonlinear projection of a probability density function ( )p x  of a high dimensional 
input onto a discrete, usually two-dimensional output space. In addition to the 
advantages inherent in ANNs, SOM provides an efficient way of data visualisation 
and clustering.  
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x1 .……… xd

Weighting vector
of neuron j wj1 wjd

Input vector

Figure 9.4 The basic structure of a standard SOM.

SOM can be viewed as a regular lattice of neurons with different areas of the 
map tuned to different activity patterns as shown in Figure 9.4. In this figure, the 
weight vector wj associated with each neuron j has an equal dimension to the input 
vector and is typically initialised with random values. The SOM training algorithm 
updates the winning node as well as nodes in its topological vicinity. The update 
rule is formulated so that the node with its weight vector nearest to the input data 
wins the competition. The most common criterion is based on maximising the inner 
product wj

Tx, which is equivalent to minimising the Euclidean distance between the 
two vectors: 

( ) argmin ,  1, 2, ,j
j

i j l= − =x x w  (9.11)

where ( )i x  is the winning unit activated by the input vector x and l is the total 
number of neurons in the network. The weighting vector of the winning neuron and 
its neighbours are updated according to the following iterative equation: 

( ) ( )
( ) ( ) ( ) ( )( ), ( )

1j j j

j j i j

t t

t t h t tη

+ = + ∆

= + −x

w w w

w x w
(9.12)

where ( )tη  is the learning rate and ( ), ( )j ih tx  a neighbourhood function whose 
value depends on the distance between node j and the wining node ( )i x . In this 
way, similar inputs will activate neurons that are close to each other on the SOM 
map. 

A common choice of the neighbourhood function ( ), ( )j ih tx  is a Gaussian 
function. It has been found that the SOM algorithm converges more quickly with a 
Gaussian neighbourhood function. The underlying assumptions for the Gaussian 



9. Context-Aware Sensing       305

neighbourhood function are: a) it is symmetric about the winning node; b) it 
decreases monotonically in amplitude with increasing lateral distance 2

,j id  and 
decays to zero as ,j id → ∞  (a necessary condition for convergence); and c) it is 
independent of the location of the winning neuron, i.e., it is translational invariant. 

In many applications, the quality of the SOM solutions can be improved by 
using a time-varying neighbourhood function [67]. A time-varying form of the 
Gaussian function can be described as: 

( ) ( )
2
,

, ( ) 2
exp

2
j i

j i

d
h t

tσ
=x (9.13)

where t is the time step index used in training and ( )tσ is the extent of the 
neighbourhood. Both the learning parameter ( )tη  and the effective width ( )tσ
should be gradually decreasing over time.  

In practical implementations, SOM learning often consists of two different 
phases of the operation, called ordering and converging phases respectively. The 
ordering phase involves approximately 1000 iterations with the learning rate ( )tη
near unity. It is not crucial whether the learning rate decreases linearly, 
exponentially or inversely proportional to time n. However, after the ordering 
phase, ( )tη  should attain a small value (i.e. of the order of or less than 0.01), 
otherwise the map will loose its adaptive behaviour. The exponential decay 
function 

( ) 0
1

exp ttη η
τ

= − (9.14)

provides a way to guarantee the lower bound 0η  of the learning rate, where 1τ is the 
time constant. The neighbourhood function ( ), ( )j ih tx should initially include almost 
all of the neurons so that the weights will become ordered globally. In the final 
convergence phase, the number of steps used should be at least 500 times the size 
of the network in order to achieve a good statistical accuracy [68]. The ordering 
phase can be omitted if the weight vector is initialised by a linear initialisation 
scheme. The algorithm in Table 9.6 summarises the main steps involved in the 
formation of a SOM.  

In order to apply a SOM to classification, a class label is assigned to each 
neuron after convergence. For each neuron that has been activated at least once, it is 
labelled with the data class that has the highest number of activations for that 
neuron. For neurons that have not been activated by the training data, they are 
usually assigned with the label of their nearest neighbours. 
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Table 9.6 The SOM learning algorithm. 

(a) Initialise the weight vector wj, learning rate and the 
“effective width” ( )tσ of the neighbourhood function 

( ), ( )j ih tx .

(b) For each input vector, ( )tx  (t is the time step index): 

• Determine the winning neuron, ( )i x :

                                ( ) argmin ,j
j

i = −x x w j = 1, 2, … , l

• Calculate the neighbourhood function: 

( ) ( )
2
,

, ( ) 2
exp

2
j i

j i

d
h t

tσ
=x

where ,j id is the distance between weight vectors 
of node i and j.

• Update the weight vectors of the winning neuron 
and its neighbours, 

( ) ( ) ( ) ( ) ( )( ), ( )1j j j i jt t t h t tη+ = + −xw w x w

• Reduce the “effective width” ( )tσ  (ordering 
phase) and the learning rate ( )tη .

(c) Repeat step (b) until the convergence condition is 
satisfied, and reuse the input data if necessary. 

9.5 Spatio-Temporal Self-Organising Maps (STSOMs) 

Due to its simplicity, SOM-based architectures have been used in a range of 
context-aware applications [23, 41, 69-71]. The conventional SOM, however, has a 
number of limitations. First, it is based on the matching of a snapshot of the input 
attributes (or features) with the neurons, and its accuracy is influenced by feature 
variations. In many context-aware applications, each activity can consist of a series 
of submovements and the resulting activation pattern in this case is no longer 
restricted to a local cluster of neurons. It tends to span across a large area of the 
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map and overlaps with neuron activations introduced by other activities. These 
overlaps in neuron excitation can adversely affect the overall recognition accuracy.  

Although it is possible to use methods such as the short-term memory model 
[72] to convert the temporal variation to stable feature vectors, they can 
significantly increase the dimensionality of the input vector and are not effective 
when the sub-movements involved have a large temporal variation and poor 
repeatability. This problem is also compounded by the fact that activities involved 
in most context-aware applications can have a mixture of stable and dynamic signal 
features, and it is practically difficult to find low-level feature representations that 
are effective for both cases. To overcome these problems, existing research has 
been concentrated on improved feature extraction and selection methods for 
deriving stable feature vectors suitable for all the activities involved. The SOM in 
this case is mainly used as a simple classifier at the final stage of the processing 
steps.

Another problem associated with SOMs is the fact that the neuron activation 
pattern of the trained map can be highly dependent on the distribution of the 
training data [73]. If a particular region of the input space contains more frequently 
occurring stimuli, it will be represented by a larger area of the SOM, and therefore 
introducing a bias depending on the number of records per class in the training data.  
Due to the compounding effect of mixing dynamic and static excitations mentioned 
above, the class discriminability is difficult to control and interclass 
misclassification (confusion) is inevitable.  

To address the two issues mentioned above, we will describe in this section a 
technique called Spatio-Temporal Self-Organising Map (STSOM) for integrating 
temporal excitation pattern and adaptive class-separation into a hierarchical SOM 
model. The key idea of the method is to rely on class-specific neuron activation 
patterns and the introduction of an additional temporal layer of the SOM to provide 
improved class separation. It also incorporates a divide-and-conquer multi-
resolution classification scheme to adaptively to remove inter-class overlaps.   

9.5.1 The Basic Structure of the STSOM 

The prerequisite of a STSOM is the introduction of both static and dynamic classes 
of neuron activation. It is worth noting that this should not be confused with the 
static and dynamic activities mentioned in context-aware sensing. An activity that is 
dynamic in the physical space can be associated with a static neuron activation 
given appropriate feature representation. For example, a fixed frequency sinusoidal 
movement can be turned into a static representation when Fourier features are used. 
In a STSOM, we consider classes that continuously activate (or in other words, the 
activation is fixated onto) the same neurons of the map as static classes. Other 
classes that involve activation patterns moving across the map are called dynamic 
classes.

To illustrate the basic concept of STSOM, let’s consider a synthetic dataset 
shown in Figure 9.5 that involves eight different activities captured by two sensor 
channels. A standard SOM with 10×10 neurons was constructed by using the 
training and node labelling schemes mentioned above. The resultant trained map is 
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represented by its U-matrix and the node labels shown in Figures 9.6(a) and 9.6(b) 
respectively. The U-matrix is a visualisation method for SOM, which represents the 
average distances amongst neighbouring weight vectors [74]. A smaller distance 
among neighbours implies a higher map resolution due to the large number of 
support in the training data. In Figure 9.6(a), the darker (blue) shades indicate 
smaller average distances among neighbours and brighter (orange) shades are 
associated with larger distances. From the U-matrix, it is evident that four static 
neuron activation classes corresponding to C1-C4 are formed. Activations 
associated with C5-C8, however, are scattered across the entire map.  
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Figure 9.5 A 2D synthetic dataset consists of eight classes. 
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Figure 9.6 Two visualisation schemes for the standard SOM: (a) the U-matrix 
representation and (b) class label for each neuron. (See colour insert.)  
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Figure 9.7 Class-specific activation plots of the static map output. (See colour insert.)

The images in Figure 9.7 illustrate the class-specific activation plots of the 
standard SOM superimposed by the node activation trajectories. During 
classification, a SOM determines the predicted class from the label of the neuron 
with its weighting vector that is the closest to the input feature vector. It is evident 
from Figure 9.7 that it is difficult for the standard SOM to differentiate classes C5-
C8. In this particular example, the classification accuracy for C5-C8 was in fact as 
low as 38%-64%.  

The key concept of the STSOM is to use the temporal characteristic of the 
neuron activation to partition the data space. As can be seen from Figure 9.7, the 
static and dynamic classes can be distinguished by observing the neuron activation 
patterns. In this example, we use the normalised index entropy to measure the 
dynamics of the activation by using the following equation:  

( ) ( )2Entropy log
N

i i
i

p pα= −p (9.15)

where N is the number of neurons activated within a fixed time window, ip is the 
probability that node i is activated, and α  is a normalisation constant. After 
applying (9.15), the corresponding result for Figure 9.7 is shown in Figure 9.8 
where a time window of 10 sampling points is used. This provides a good 
separation of static and dynamic neuron activation classes, and by pruning out 
dynamic activations, a revised static labelling shown in Figure 9.9 can be achieved.  
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Figure 9.8 The normalised index entropy of the node activation produced by 
the synthetic dataset in Figure 9.5. 
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Figure 9.9 Revised static labelling of the STSOM after pruning out 
dynamic activations. 

Since the static map is trained with both static and dynamic data, it spans the 
entire data space. For data corresponding to the index entropy higher than a 
specified threshold, a second layer of the STSOM called the dynamic map is used to 
extract the temporal signature of the neuron activation produced by the static map. 
The input to the dynamic map for this experiment consists of the moving average of 
the positive area (APA(t)) and negative area (ANA(t)) with regard to the centre of 
each axis of the static map. That is, 
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( ) ( ) ( )
1

1 1 1,      
2 2

0

t

t

D Dc if c
APA t

otherwise
τ

τ τ
= −Ω+

+ +− >
= Ω (9.16)

( ) ( ) ( )
1

1 1 1,      
2 2
0

t

t

D Dc if c
ANA t

otherwise
τ

τ τ
= −Ω+

+ +− <
= Ω (9.17)

where Ω  is the size of the shifted window, and D and ( )c τ are the map dimension 
and the coordinate of the activated node along a given axis, respectively. These 
features, in fact, reflect the average position of the activated node trajectory with 
regard to each quadrant of the map. It is also possible to use other temporal features 
to provide a good separation for the dynamic classes of interest. In this experiment, 
the dynamic map consists of 25 neurons and the corresponding result after applying 
(9.16) and (9.17) is shown in Figure 9.10. In Figure 9.11, we also provide the class-
specific activation plots of the dynamic map for C5-C8. It is evident from these 
maps that a good classification result for these classes is possible.  

7 6 6

6

67

8

7 6 65

7 8 87

7 5 85

7 5 55

8

8

0.145

0.509

0.872

(a) (b)

Figure 9.10 (a) The U-Matrix and (b) node labels of the dynamic map.  
(See colour insert.)

A detailed quantitative comparison of class-specific recognition accuracy 
between the standard SOM and the proposed STSOM is shown in Figure 9.12. It 
can be seen that significant improvements have been achieved for the dynamic 
classes (C5-C8) whilst the recognition accuracy for the static classes (C1-C4) being 
maintained. In this example, the overall recognition accuracy of the training set by 
using the standard SOM with 100 neurons is 75.12%, whereas the overall 
recognition accuracy for the STSOM has improved to 95.63% by using a total of 
125 neurons. 
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Figure 9.11 Class-specific activation plots of the dynamic map output.  
(See colour insert.)
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Figure 9.12 The comparison of the class-specific recognition accuracy 
between the standard SOM and the STSOM. 

9.5.2 The Use of Multi-Resolution for Improved Class Separation 

Before putting the above STSOM framework to practical use, it is necessary to 
examine the class separation of both the static and dynamic maps. Due to the 
compounding effect of mixing dynamic and static excitations mentioned earlier, the 
class discriminability between static classes can be limited for a STSOM, 
particularly when the map size is relatively small. To demonstrate this, Figure 9.13 
illustrates a dataset used to train a STSOM with sixteen neurons for the static layer. 
The corresponding class-specific activation is shown in Figure 9.14, where classes 
C2 and C3 are mapped onto the same area.  

This problem is similar to that encountered in a standard SOM and can be 
solved by expanding the map resolution. A less expensive strategy, however, is to 
perform an adaptive local expansion to avoid the reconstruction of a larger map 
from scratch. Existing strategies developed for this purpose include the Growing 
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Hierarchical Self-Organising Map (GH-SOM) [75] as illustrated in Figure 9.15. It 
incorporates the concept of grid growing proposed by Fritzke [76] to adaptively 
insert a new row or column of neurons between units with the largest deviation 
between the weighting and input vectors. The weighting vectors of the nodes are 
then initialised with the average of their neighbours. The method also allows an 
expansion of each node with high quantisation error with a multi-layer SOM.  

Another approach is proposed by van Laerhoven [71], which uses k-means sub-
clusters to expand each neuron to avoid the overwriting of prototype vectors on the 
map. The problem with these methods is that the expansion of the nodes does not 
directly take into account the class information, and therefore the classification 
accuracy may not necessarily be improved.  

In the proposed STSOM, the expansion of the problematic nodes is only 
performed when there is a reasonable level of support by data from different 
classes. This is important as it avoids the expansion of nodes corresponding to 
transitions of the dynamic classes. To illustrate the effect of node expansion, Figure 
9.16 demonstrates the class-specific activation plot of SOM with twenty-five 
neurons for classes C2 and C3 from the example shown in Figure 9.14. It is evident 
that by increasing the map dimensionality, the activation map for these two classes 
starts to separate. Instead of increasing the resolution of the entire map, we can also 
selectively increase the resolution of the problematic area as shown in Figure 9.17, 
which demonstrates a much improved class separation compared to that of Figure 
9.16. It should be noted that the activation map for a given class may not be limited 
to a single or several connected neurons. The expansion scheme mentioned above is 
class-specific, i.e., when a node is expanded, all other nodes belonging to the same 
class of the current node should also be expanded. 
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Figure 9.13 A 2D synthetic dataset consists of four classes. 
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Figure 9.14 A demonstration of errors due to overlaps between static classes. 
(See colour insert.)
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Figure 9.15 Node expansion within a multi-layer SOM through using the 
GH-SOM architecture. 

C2 C3

Figure 9.16 Class separation for C2 and C3 of Figure 9.14 by increasing the 
map size from 16 to 25 neurons. (See colour insert.)
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C2 C3

Figure 9.17 The activation plot of node expansion with sixteen neurons to 
achieve a clear class separation. (See colour insert.)

9.5.3 STSOM Algorithm Design 

By introducing the basic idea of STSOM and how to use the multi-resolution 
concept for improved class separation, we are now ready to take a step-by-step tour 
of the STSOM algorithm. To help with the explanation, we will use a synthetic 
dataset shown in Figure 9.18 to highlight the major steps involved. In this dataset, 
the data for classes C1 and C4 are generated by adding different levels of Gaussian 
noise to a constant vector of (500, 580). The data for classes C2 and C5 are 
generated by a constant vector of (500, 400) plus small Gaussian noise and sin 
waves with amplitudes of (1000, 1500) along the two orthogonal axes. The main 
difference between the raw signal of these two classes is the frequencies used (3Hz 
for C2 and 2Hz for C5). Finally, the data for classes C3 and C6 are generated by 
adding a small Gaussian noise to the constant vectors (500, 500) and (501, 501), 
respectively. We will be using this example to provide a step-by-step guide to the 
proposed STSOM design. 

The first step of the algorithm is to generate a static map based on the feature 
vectors of the original signal. The details of feature extraction and optimum feature 
selection are provided in Chapter 8 of this book. Once the static map is generated, a 
confusion matrix is constructed based on this map alone. A confusion matrix 
contains information about the actual and predicted classifications obtained from 
the classification system. The diagonal elements of the matrix represent the number 
of correct classifications, i.e., cases in which the classifier returns the same 
predicted class as the actual class. The off-diagonal elements represent the number 
of misclassifications and can be used as an indication of class overlap. Table 9.7 
illustrates the derived confusion matrix for the data shown in Figure 9.18 when the 
static map size is selected to be 36.   
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Figure 9.18 A 2D synthetic dataset consists of six classes, generated by 
constants plus Gaussian noises and sinusoidal waves. 

The next step of the STSOM algorithm is to identify class overlap to form a set 
of combined-classes. One method of achieving this is to use hierarchical clustering 
which treats each row as a singleton cluster and then successively merges clusters 
to form a dendrogram [77]. In our method, the distance measure is based on the off-
diagonal element of the confusion matrix between class pairs. Since the confusion 
matrix is asymmetric, single linkage hierarchical clustering is used. With this 
method, we merge in each step the two clusters whose two closest members have 
the smallest distance. Sub-groups representing the combined-classes can be formed 
by applying a threshold to the output dendrogram at the point where between-
cluster distances increase sharply. Table 9.8 shows the re-ordered confusion matrix 
when these subgroups are formed by applying the above hierarchical clustering 
algorithm, illustrating the class overlap within the static map of the STSOM. It can 
be seen that the result in Table 9.8 corresponds well with the neuron activation map 
shown in Figure 9.19. For this dataset, there are three different types of class-
overlap, i.e., static-static (C3-C6), static-dynamic (C1-C4), and dynamic-dynamic 
(C2-C5). 

The subsequent steps of the STSOM algorithm are to use the strategies 
described in 9.5.1 and 9.5.2 to separate these overlaps, either by introducing the 
dynamic map of the STSOM or through adaptive node expansion. To separate static 
from dynamic activation (i.e., overlap between C1 and C4), the normalised index 
entropy as described in 9.5.1 can be used. This will upgrade activation associated 
with C4 to the dynamic map, leaving C1 unambiguously classified. If a dynamic 
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class is overlapped with more than one static class, adaptive node expansion as 
described in 9.5.2 can be applied to the remaining static classes after the dynamic 
class is filtered out.  

Table 9.7 The confusion matrix for the classification of the 
synthetic dataset in Figure 9.18 with a static map of 36 
neurons.

C1 C2 C3 C4 C5 C6 
C1 300 0 0 131 0 0 
C2 0 180 0 0 60 0 
C3 0 0 300 0 0 300 
C4 0 0 0 169 0 0 
C5 0 120 0 0 240 0 
C6 0 0 0 0 0 0 

Table 9.8 The re-organised confusion matrix for the classification 
of the synthetic dataset in Figure 9.18 with a static map of 36 
neurons.

C1 C4 C2 C5 C3 C6 

C1 300 131 0 0 0 0 
C4 0 169 0 0 0 0 
C2 0 0 180 60 0 0 
C5 0 0 120 240 0 0 
C3 0 0 0 0 300 300 
C6 0 0 0 0 0 0 

To resolve overlaps among dynamic activations, the dynamic map of the 
STSOM is introduced. In the example shown above, we need to consider class 
overlap between C2 and C5, as well as C4 which has been upgraded from the 
previous step. Figure 9.20 demonstrates the result of applying a dynamic map with 
16 neurons based on the APA(t) and ANA(t) measures of the static map. Yet again, 
adaptive node expansion can be applied if between-class overlap persists. 

The final step in the class separation process is to resolve the static-static 
overlap (i.e., the class overlap between C3 and C6). This can be achieved by node 
expansion as described in 9.5.2, and the corresponding result for the above 
synthetic data with a sixteen neuron expansion is shown in Figure 9.21.  

To achieve adequate class separation for the above synthetic data, a total of 68 
neurons have been used (36 for the static map, 16 for the dynamic map, and another 
16 for the static node expansion). To assess the value of the proposed STSOM 
framework, we have compared the achieved classification accuracy with that of a 
standard SOM. It has been found that the overall accuracy increased from 66.06% 
to 95.89%, and for a standard SOM to achieve a similar accuracy, the map 
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resolution needs to be increased to at least 20×20, i.e., 400 neurons. In this case, the 
SOM accuracy is 92.33%, which is still a touch poorer than that of the STSOM. To 
allow a detailed assessment of the above result, Figure 9.22 illustrates the class-
specific activation plots for the standard SOM with 400 neurons, and Tables 9.9 and 
9.10 provide the derived confusion matrices for the SOM and STSOM, 
respectively. Finally, summaries of the STSOM learning and inferencing algorithms 
are provided in Tables 9.11 and 9.12. 

C1 C2 C3

C4 C5 C6

Figure 9.19 Illustration of three types of overlap in the static map with 36 
neurons for the test data shown in Figure 9.18. The overlap occurs between 
static and dynamic classes (C1-C4), two dynamic classes (C2-C5) and two 
static classes (C3-C6), respectively. (See colour insert.)

C4 C5C2

Figure 9.20 Class-specific activation plots for the dynamic map of the test 
data shown in Figure 9.18. (See colour insert.)
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C6C3

Figure 9.21 Class-specific activation plots after node expansion for C3 and 
C6 of Figure 9.19. (See colour insert.)

C1 C2 C3

C4 C5 C6

Figure 9.22 Class-specific activation plots of a standard SOM with 400 
neurons for the synthetic dataset shown in Figure 9.18. (See colour insert.)
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Table 9.9 The confusion matrix for the classification of the 
synthetic dataset in Figure 9.18 by a standard SOM with 400 
neurons.

C1 C2 C3 C4 C5 C6 
C1 300 0 0 1 0 0 
C2 0 283 0 0 120 0 
C3 0 0 300 0 0 0 
C4 0 0 0 299 0 0 
C5 0 17 0 0 180 0 
C6 0 0 0 0 0 300 

Table 9.10 The confusion matrix for the classification of the 
synthetic dataset in Figure 9.18 by using the proposed STSOM a 
total of 88 neurons. 

C1 C2 C3 C4 C5 C6 

C1 296 19 0 3 0 0 
C2 0 281 5 14 0 0 
C3 0 0 295 0 0 0 
C4 4 0 0 269 11 0 
C5 0 0 0 14 289 4 
C6 0 0 0 0 0 296 

9.5.4 STSOM for Context-Aware Sensing   

To illustrate the practical value of the STSOM for context-aware sensing, the 
proposed algorithm is applied to the same experiment described in Figure 8.5 of 
Chapter 8. It features a simple physical exercise sensing experiment where four 
two-axis accelerometers are placed on the left and right ankles and legs. The 
activities of the subject during the exercise routine include 1) sitting (chair), 2) 
standing, 3) steps, 4) sitting (floor), 5) demi-plie, 6) galloping left, 7) skipping, 8) 
galloping right, 9) side kick, 10) front kick, and 11) walking. From Figure 8.5, it is 
evident that the decision boundaries for the eleven activities involved are highly 
complex, particularly for some of the dynamic activities involved. Figure 9.23 
reiterates the sensor signals collected for this experiment, showing the moving 
signal energy calculated for the eight sensory channels involved.  
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Table 9.11 The STSOM model learning algorithm.

Model learning: 

(1) Train the static map with the standard SOM training algorithm. 

(2) Assign the class label to each neuron by: 
(a) Applying the static map on the training set and keep record of 

activation frequency of each neuron; 
(b) Pruning out the labels of neurons with activation frequency 

lower than a specified threshold; 
(c) Assigning a label to an unlabelled node with the label of the 

nearest labelled neighbour. 

(3) Form sub-clusters of highly confused classes by: 
(a) Applying the static map on the training set; 
(b) Calculating the confusion matrix; 
(c) Creating a list of between-class distances and keep only the 

elements that have values that are greater than a specified 
threshold;

(d) Performing single link clustering based on the distance list; 
(e) Representing each independent spanning tree as a sub-cluster 

of a confused-class. 

(4) If the distance list is empty, relabel the static map by repeating step 
2(a) and 2(c), and output the map and terminate. Otherwise, calculate 
the index entropy of the classes in the confused subclusters. 

(5) Extract data samples for dynamic map training 
(a) Partition the data of the confused classes using the index 

entropy calculated over a fixed window ;eΩ
(b) Based on the number of supporting data decide if a confused 

class is static or dynamic. 

(6) Perform feature extraction on the outputs of the static map for the 
samples that correspond to the dynamic classes and use them to 
construct the dynamic map. 

(7) For each subcluster of confused static classes, create a higher layer 
static map; allocate an integer array to store the class-to-map index.  

(8) Keep a record of the labelled maps, entropy threshold, window size, 
features used, and class-to-map index for model inference. 
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Table 9.12 The STSOM inferencing algorithm. 

Model Inference: 

(1) For each input vector, ( )s tx  (t is the time step index), determine 
the winning neuron, ( )si t of the static map s.

(2) Calculate the index entropy over a fixed window .eΩ

(3) If the entropy is higher than a specified threshold,  

• Calculate input vector ( )d tx for the dynamic map d;
• Determine the winning neuron, ( )di t ;
• Output the label of the neuron ( )di t .

 Otherwise,  

(a) Use the label of the neuron ( )si t  and the class-to-map 
index to determine the appropriate static map: 

( )( )= class-to-map label t .sh i

(b) If map h is the same as map s, output the label of the 
neuron ( )si t , otherwise 

• Based on the input vector ( )si t , determine the 
winning neuron, ( )hi t of the static map h; 

• Output the label of the neuron ( )hi t .

For this experiment, the static map of the STSOM involves one hundred neurons 
and the total number of neurons we used after the introduction of the dynamic map 
and node expansion was 164. The input vector consisted of the raw signal and 
signal energy calculated over a fixed window of fifty samples (2s) for each sensor 
channel. Figure 9.24 illustrates the class-specific activation plots of the static and 
dynamic maps of the STSOM for both the training and test data. In order to assess 
the improvement in model accuracy through the STSOM algorithm, each static map 
of the STSOM was built from the standard SOM. This enabled a fair comparison 
since both maps shared the same weight vectors, and so the effect of local minima 
in different model training was avoided. To compare the performance of the 
standard SOM and the proposed STSOM, the experiment was repeated fifty times. 
We compared STSOM using 164 neurons with standard SOMs using 100 and 400 
neurons, respectively, and Figure 9.25 illustrates the relative performance observed. 
It was found that with the standard SOMs the average performance was about 58%, 
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and an increase of the number of neurons from 100 to 400 did not make any 
noticeable difference. The use of STSOM with a relatively small number of 
neurons, however, has achieved a marked improvement in performance, especially 
for classes C1, C3, C6, and C11.  
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Figure 9.23 A time series plot of moving signal energy calculated for the 
eight sensory channels involved.  

9.6 Conclusions 

In this chapter, we have described the use of context awareness for more accurate 
and intelligent pervasive sensing. The use of contextual information, however, is 
not new and it has been widely used in many pattern recognition applications 
including NLP, HCI, image processing, and computer vision. Its use for pervasive 
sensing, however, has introduced some interesting new challenges. The popularity 
of context-aware architectures is due to the increasingly ubiquitous nature of the 
sensors as well as the diversity of the environment under which the sensed signals 
are collected. For the purpose of BSNs, the main emphasis of a context-aware 
design is concerned with the interpretation of physical and biochemical signals 
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acquired from both wearable and implantable sensors and their association with the 
ambient environment. The contextual information is therefore mainly focussed on 
the user’s activity, cognitive/mental activities, physiological and affective states, 
and the environment context such as location, proximity, time, social interaction, 
and connectivity to the general healthcare environment.  

The use of contextual information is important to the improvement of diagnosis 
accuracy because in a BSN, similar sensory signals can be interpreted differently 
depending on the current activities of the patient. To understand the intrinsic 
characteristics of the sensed signal and determine how BSNs should react to 
different events, the contextual information is essential to the adaptation of the 
monitoring device so as to provide more intelligent support to the users. 

Our discussion in this chapter has mainly been focussed on the use of HMMs 
and SOMs for context-aware sensing. The main advantage of the HMM is that it 
has a sound statistical grounding and its parameter estimation can take into account 
different sources of uncertainty. Furthermore, it is modular, relatively robust, and 
can be combined into larger models. It is also possible to incorporate high-level 
domain knowledge. The disadvantage of the method, however, originates in the 
relatively strong assumptions about the data and the amount of training data 
required due to the large number of parameters involved.  

The alternative approach of using ANNs, and SOMs in particular, offers the 
advantages of nonlinearity, adaptivity, evidential response, and fault tolerance. 
Moreover, the relatively small number of operations involved in the combined 
learning and classification process makes the model particularly suited for parallel, 
on-chip analogue implementations. For BSNs, this means some of the processing 
steps involved can be performed locally on low-power, miniaturised sensor nodes 
so as to minimise the communication bandwidth required based on effective 
distributed inferencing.  

The main features of the STSOM architecture proposed in this chapter are the 
introduction of the dynamic layer and an adaptive mechanism for class separation 
and node expansion. It has been shown that the overall number of the neurons 
involved in the proposed STSOM is relatively small compared to traditional 
approaches. This is essential for BSN nodes, which have limited computational and 
storage resources. For low power analogue implementation, the implications for 
hardware design are expected to be even greater.  

It should be noted that in this chapter, we have paid little attention to signal 
feature extraction and selection. These are, in fact, essential to the overall 
performance of context detection techniques. In Chapter 8, we have summarised a 
number of different approaches for extracting intrinsic signal characteristics. The 
effective use of these features can greatly enhance the accuracy of the context 
detection algorithm. Although we have only mentioned in this chapter the use of 
HMMs and SOMs for context recognition, other techniques such as clustering and 
high level inferencing techniques as described earlier in the book are equally 
applicable for this purpose. 
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Figure 9.24 Class-specific activation plots of: (a) the static map with training 
data; (b) the static map with test data; (c) the dynamic map with training data; 
and (d) the dynamic map with test data. (See colour insert.)
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Figure 9.25 A comparison of the recognition accuracy between a standard 
SOM with 100 neurons, a standard SOM with 400 neurons, and a STSOM 
with 164 neurons for the experiment shown in Figure 9.23. 
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Autonomic Sensing 

Guang-Zhong Yang, Benny Lo, and Surapa Thiemjarus 

10.1 Introduction 

In most engineering problems, our main concern is the exact specification and 
modelling of the system architecture and its associated responses. In this manner, 
we can discover whether the analytical solution is tractable and practical. For com-
plex systems, however, this is not always possible and the use of bio-inspired de-
sign provides a way of imitating how biological systems adapt to complex, dy-
namic, and rapidly changing environments. In Chapters 1 and 7, we have already 
highlighted the importance of bio-inspired design for autonomic sensing and the 
development of ultra-low power processing for BSNs. Due to the inherent com-
plexities involved in managing a large number of wireless sensors, bio-inspired 
sensing and networking has attracted significant research interest in recent years.  

The use of bio-inspired sensing generally involves the specification of a set of 
simple rules and how they should be iteratively applied to the population. One well 
known example of such an approach is Swarm Intelligence (SI) developed in artifi-
cial intelligence for studying the collective behaviour of decentralised, self-
organised systems [1]. SI systems are typically made up of a population of simple 
agents or devices interacting locally with one another as well as with their environ-
ment. Although there is no centralised control dictating how individual devices 
should behave, local interactions between these devices can lead to the emergence 
of an effective global behaviour. To provide self-organisation to the sensor network 
nodes so that they can coordinate themselves autonomously, large-scale spatial pat-
terns (found in the clustering behaviour of ants) using Local Activation Long-range 
Inhibition (LALI) have been investigated [2]. This is an example of how simple 
mechanisms can lead to an effective collective behaviour with functionality and 
adaptivity amplified on a global scale in the absence of a rigid central management 
structure.

Another example of bio-inspired sensing and networking is quorum sensing. 
Quorum sensing is the ability of bacteria to communicate and coordinate behaviour 
via signalling molecules. Bacteria use quorum sensing to produce and secrete cer-
tain signalling compounds called auto-inducers or pheromones. These bacteria also 
have a receptor that can specifically detect the inducer. This means that when the 
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inducer binds the receptor, it activates the transcription of certain genes, including 
those for inducer synthesis. The purpose of quorum sensing is to coordinate certain 
behaviour or actions between bacteria of the same kind within the local vicinity. 
When the concentration of the inducer exceeds a threshold due to the clustering of 
the same bacteria, more inducer is synthesised which causes a positive feedback 
loop that fully activates the receptor. For example, bacteria such as Pseudomonas 
Aeruginosa can grow within a host harmlessly until they reach a certain concentra-
tion. At this point they become aggressive, and in numbers sufficient to overcome 
the host’s immune system and lead to disease [3].  

Quorum sensing is a useful concept for sensor networks because the bacterial 
cells need to be aware of the global cell concentration, and in the same way a sensor 
needs to know if there are enough sensors to form a cluster for the purpose of moni-
toring a particular area of the network collectively [3].   

In searching for biological inspiration for sensor network design, two biological 
systems are regarded to be of particular importance to the BSN – the Autonomic 
Nervous System (ANS) and the Biological Immune System (BIS). The ANS com-
prises of autonomic ganglia and nerves and is primarily responsible for the control 
of the body’s internal environment. In Chapter 1, we have explained the basic struc-
ture and complexity of the ANS. Having understood the anatomical makeup of the 
ANS, one can begin to explore how it overcomes the challenges faced by the hu-
man body sensor networks as a whole. Some of the major features of the ANS have 
been summarised as the so-called self-* properties such as self-management, self-
organisation and self-healing. The BIS, on the other hand, provides us with impor-
tant design considerations for developing sensor networks with effective self-
protection mechanisms by exploiting the adaptivity and versatility of the biological 
system in dealing with bacterial attack and virus infection. In the subsequent sec-
tions of this chapter, we will illustrate some of the design principles of autonomic 
sensing based on the features derived from the ANS and BIS, and highlight some of 
the computational considerations involved in implementing these concepts.   

10.2 Autonomic Sensing 

The term Autonomic Sensing follows the concept of Autonomic Computing coined 
by IBM in their manifesto in response to the looming crisis of software complexity 
facing the IT industry. The spiraling cost of managing increasingly complex sys-
tems is becoming a significant obstacle that is undermining the future growth and 
societal benefits of IT technology. As stated by Kephart and Chess of IBM in their 
article on the vision of autonomic computing [4]: 

“Computing systems’ complexity appears to be approaching the limits of 
human capability, yet the march toward increased interconnectivity and in-
tegration rushes ahead unabated. This march could turn the dream of perva-
sive computing – trillions of computing devices connected to the Internet –
into a nightmare.”
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Table 10.1 The eight defining characteristics of an autonomic system  
(adapted from http://www.research.ibm.com/autonomic/).

Characteristics of Autonomic Systems 

Self-
management

An autonomic system needs to have detailed knowledge about its compo-
nents, current status, ultimate capacity, and all connections to other sys-
tems to govern itself through effective resource management, utilisation, 
and sharing.  

Self-
configuration

An autonomic system can automatically and dynamically configure and 
reconfigure itself under varying conditions and changing environments.  

Self-
optimisation

An autonomic system can constantly optimise its performance and re-
source utilisation by monitoring its constituent components, and fine-tune 
workflow to achieve predetermined performance and resource utilisation 
goals.

Self-
healing

An autonomic computing system can gracefully recover from routine and 
extraordinary events that cause component malfunction. It is able to dis-
cover problems and establish means of using alternative resources or con-
figuration to maintain system functionality.  

Self-
protection

An autonomic computing system must be able to exert self-protection by 
automatically detecting and identifying different types of attacks to main-
tain overall system security and integrity. 

Self-
adaptation

An autonomic system must be context-aware and adapt itself for im-
proved interaction and performance under changing working environ-
ments and user requirements. 

Self-
integration

An autonomic system can fully function under heterogeneous infrastruc-
tures and be seamlessly and securely integrated with other systems. 

Self-
scaling

An autonomic system will anticipate the optimised resources required 
and scale its functionality while keeping its complexity hidden from the 
user.

The biological connotation of autonomic sensing is not coincidental. It reflects 
our inspiration by biological systems, which are able to manage complex networks 
so effectively and gracefully. It also echoes our desire to develop self-management 
systems that can deal with the present complexity crisis and free us from the system 
administration nightmare. It has been expected that IT systems, particularly consid-
ered within the context of pervasive computing, will become so massive that even 
the most skilled system integrators will find them too complex to install, configure, 
optimise, and maintain [4]. All of these considerations have motivated the search 
for an alternate paradigm based on the strategies used by biological systems to deal 
with the challenges of scale, complexity, heterogeneity, and uncertainty involved in 
pervasive sensing.  
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The overall goal of an autonomic system is to provide self-management in ac-
cordance with high-level guidance from the humans. Table 10.1 outlines the eight 
defining characteristics of an autonomic system advocated by IBM. While the defi-
nition of autonomic sensing is likely to evolve as the contributing technologies ma-
ture and become established, these eight self-* properties have highlighted some of 
the major requirements, as well as challenges, faced by the pervasive sensing com-
munity.  

In this chapter, we will focus on three of the self-* properties listed in Table 
10.1, i.e., self-healing, self-organisation, and self-protection for improved design of 
BSNs. It must be pointed out that our aim is not to reverse-engineer biological sys-
tems but only to follow some of the design principles so that plausible computa-
tional architectures suitable for BSNs can be developed. 

10.3 Fault Detection and Self-Healing 

Effective fault detection and recovery is one of the major concerns of wireless sens-
ing. Although the basic principles of fault localisation and analysis have been ad-
dressed by the control and process engineering communities for many years [5, 6], 
fault detection and self-healing for BSNs present a number of unique challenges. 
For a BSN, we need to examine both hard and soft failures by considering the mo-
bile, ad hoc nature of the underlying network, the presence of both transient and 
permanent abnormalities, and the possibility of multiple and correlated failures. The 
hard failure mentioned above includes node failures due to faulty sensors, loss of 
wireless communication or depleted battery, whereas soft failure can be caused by 
excessive noise artefact due to poor sensor contact and motion. The isolation of 
these problems is also compounded by the complexity of the BSNs in interacting 
with the heterogeneous ambient sensing environment.   

Figure 10.1 illustrates a typical system architecture for fault diagnosis. Many of 
the traditional systems take a global approach and assume that only one fault may 
occur in the system at a given time. In addition, these systems frequently use deter-
ministic models that assume all dependencies and causal relationships are known. 
More recently, the use of Finite State Machines (FSMs) and probabilistic models 
have gained considerable interest. The latter is particularly relevant to BSNs as it 
provides an effective means of managing heterogeneous networks with non-
deterministic factors. For example, uncertainty about the dependencies amongst the 
sensor nodes can be represented by assigning probabilities to the links in the de-
pendency or causality graph that can be transformed into a belief network.  

Given an evidence set, belief networks can be used for queries including: 1) be-
lief assessment, 2) Most Probable Explanation (MPE), 3) maximum a posteriori
hypothesis, and 4) maximum expected utility [7]. As an example, MPE can be used 
to find a complete assignment of values to variables in a way that best explains the 
observed evidence, and therefore its value in fault diagnosis. The main advantage of 
belief networks is in their ability to handle uncertainties and being able to be im-
plemented in a distributed framework. They are therefore particularly suited for 
wireless sensor networks, due to their similarity to biological systems in using sim-
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ple local processing and messaging to form an effective global behaviour with fault 
detection and self-healing properties. 
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Figure 10.1 Architecture for a typical fault diagnosis system. 

10.3.1 Belief Networks 

To understand how belief networks work, it is necessary to explain these probabilis-
tic graphical models, which are a marriage of graph theory and probability theory. 
Qualitatively, their structures are graphs in which the nodes represent random vari-
ables and the arcs represent dependencies. Generally, there are two types of graphs: 
undirected and directed graphs. Undirected graphical models are known as Markov 
Random Fields (MRFs) or Markov networks. Directed graphs, particularly Directed 
Acyclic Graphs (DAGs), are known as Bayesian networks or Belief Networks. The 
latter have a more complicated notion of dependency by taking into account the di-
rectionality of the arcs which connote the causality. Recently, the concept of Factor 
Graphs (FGs) [8, 9] has been developed. An FG is a bipartite graph which sub-
sumes both Bayesian networks and MRFs. All of the independency relationships in 
a Bayesian network or MRF can be expressed in an FG, so that a single unified be-
lief propagation algorithm can be used for data inferencing.  

Quantitatively, probabilistic graphical models provide an economical way to en-
code a complete Joint Probability Distribution (JPD) over a large set of variables. 
The basic decomposition scheme offered by the probabilistic graphical models re-
lies on the chain rule of probability calculus, i.e.,

( ) ( )1 1 1,..., | ,...,
n

n j j
j

P x x P x x x −= ∏ (10.1)

which permits the decomposition of a joint distribution ( )1 ,..., nP x x  as a product of 
n local conditional distributions. Under certain conditional independence assump-
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tions, large distribution functions can be decomposed into several small distribu-
tions while the global nature of the problem domain is preserved.  

In a Bayesian network, the direction of the arc denotes a direct child-parent rela-
tionship between two variables. That is, the arc is directed from a Markovian parent 
to a child node. The conditional probability of iX  is sensitive only to the Mark-
ovian parents when 

( ) ( )1 1| ,..., |i i i iP x x x P x pa− = (10.2)

In this case, the joint distribution is equivalent to the product decomposition: 

( ) ( )1
1

,..., |
n

n i i
i

P x x P x pa
=

= ∏ (10.3)

In other words, under the conditional independence assumptions denoted by the 
network structure, the product of the local conditional distributions of all nodes is 
equal to their JPD. This is essential to the calculation of JPD because as the number 
of variables grows, their JPD is not readily accessible. Figure 10.2 illustrates an ex-
ample Bayesian network, where the JPD of the Bayesian network can be simplified 
as:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

, , , , , , | , | |

                                       | , |

P A B C D E F G P A P B P C A B P D C P E C

P F D E P G E

=

B

E

F G

D

A

C

Figure 10.2 An example Bayesian network showing how the JPD can be cal-
culated. 

In real-life problems, it is often possible through observation that some conse-
quences are more likely to occur than the other, although not with absolute cer-
tainty. By summing over all the possible values of the irrelevant variables (called 
marginalisation), all possible inference queries can be answered accordingly. In 
practice, however, more efficient inference methods are used, as the direct method 
yields exponential time complexity.  
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Bayesian networks were first introduced during the mid 1980s, largely through 
the work of Judea Pearl when he developed a belief propagation algorithm for in-
ferencing in a singly-connected network [10, 11]. This algorithm is also commonly 
called the polytree algorithm. A singly-connected network is a network that con-
tains no closed loops, i.e., there is only one single path between any two nodes in 
the network. Inferencing in a general Bayesian network has been proven to be NP-
Hard [12] but for graphs that are singly-connected, there exist algorithms that can 
provide exact solutions run in polynomial time.  

The inference tasks in Bayesian networks include: 

• Belief updating vs belief revision: belief updating involves the determina-
tion of the probabilities of a set of query variables given the evidence. Be-
lief revision (MAP explanation) consists of determining the most probable 
instantiations of a set of variables given the evidence [13].  

• Diagnostic vs causal reasoning: diagnostic reasoning infers the most likely 
cause from the obtained evidence, while causal or “top-down” reasoning 
infers how the cause generates effects [14]. 

Learning in Bayesian networks involves two parts: structure learning and pa-
rameter learning. Murphy [14], for example, classified structure and parameter 
leaning in Bayesian networks based on the prior knowledge of the network structure 
and the availability of the data. When the structure of the network is known (e.g.
from prior knowledge) and the data is fully observed, maximum likelihood estima-
tion can be used. That is, the parameters can be derived from data distribution typi-
cally by counting. Due to the potential sparse data involved, small priors are usually 
added to the calculation of the conditional probabilities.  

When the structure is known but the data is partially observed, the probabilities 
associated with the unobservable or hidden nodes can be learned from optimisation 
methods based on Expectation Maximisation (EM) or gradient descent.  

Finally, when the structure is unknown, model selection can be formulated as a 
search problem. For example, a spanning tree is an objective approach in construct-
ing a Bayesian network structure for observable cases, and the Maximum Weight 
Spanning Tree (MWST) algorithm proposed by Chow and Liu [15] is a well-known 
algorithm for constructing Bayesian networks with singly-connected structures.  

10.3.2 Belief Propagation Through Message Passing 

Belief Propagation is a decentralised iterative algorithm that operates by transmit-
ting messages between nearby nodes in the network. Each node acts as a processing 
unit which can communicate only to its direct neighbours via local message pass-
ing. Associated with each node in the network are the conditional probability distri-
butions that quantify the node and its parents. 

In local message propagation, when a message is received, the node will pass 
messages to all of its neighbours, with the exception of the node from which the re-
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ceiving message originated. The actual mechanism also depends on its instantiation 
status and how it interconnects with other nodes, as shown in Figure 10.3. The be-
lief propagation can be accomplished in the following three steps (in any order): 1) 
belief updating, 2) bottom-up propagation, and 3) top-down propagation. 

C

C

SerialConverging Diverging

A A

A

B

B

C B

Figure 10.3 Three cases of blocked paths. In the converging case, the path 
between A and B is blocked when C is not instantiated and has no λ  evi-
dence. In serial and diverging cases, the paths are blocked when C is instanti-
ated. 

Consider node X in a typical fragment of a singly connected network, as shown 
in Figure 10.4. Let e be the total evidence available, -e  the evidence connected to X
via its children, { }1 ,..., mY Y=Y and e+  the evidence connected to X via its par-
ents { }1 ,..., nU U=U . The belief distribution of a particular node X is updated based 
on the evidence received from its child- and parent-nodes. This can be derived as: 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

1 1

1

1
,...,1 1

'

,..., | | ,...,

| ,...

m n

j

n

+

XY XY U X U X

m n

Y n X i
u uj i

P x P x | e = P e | x,e P x | e

P e e x P x e e

x x

x P x u u u

α

α

αλ π

α λ π

− +

− − + +

= =

=

=

=

= ∏ ∏

 (10.4)

where ( ) 1P eα −= is a normalisation constant, 
jXYe−  denotes the evidence contained 

in the subnetwork that connects to node X via link jX Y→ , and 
iU Xe+ denotes the 

evidence contained in the subnetwork that connects to node X via link iU X→ .
The belief update in node X can be performed by inspecting the evidence in the λ
messages from its children, ( ) ,  1,...,

jY x j mλ = , and the evidence in the π messages 
from its parents, ( ) , 1,...,X iu i nπ = . The accumulation of the evidence from child 
nodes is also known as diagnostic support or λ evidence, ( )xλ . The accumulation 
of the evidence from the parent-nodes is also known as causal support or π evi-
dence, ( )xπ .

During bottom-up belief propagation, each node updates its parents’ λ  message 
array. For example, the new ( )X iuλ  message from node X for parent iU  is calcu-
lated by: 
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( ) ( ) ( ) ( )1
:

| ,...,
k

X i n X k
x u k i k i

u x P x u u uλ β λ π
≠ ≠

= ∏ (10.5)

which is the accumulation of evidence in messages from all children and parents of 
X apart from Ui. The summations indicate marginalisation over all possible values 
of the variables given bellow the  sign. 

During top-down belief propagation, each node updates its children’s π  mes-
sage array. For example, the new ( )

jY xπ  message from node X to the child jY  is 
calculated by: 

( ) ( ) ( )'
j jY Yx P x xπ λ= (10.6)

which is the accumulation of evidence in messages from all children and parents of 
X apart from jY . At the boundary, exceptions are applied. For root nodes, for ex-
ample, theπ evidence is set to be the prior probability. If X has no children and has 
not been instantiated, all of the elements in the λ evidence vector are set to be 1. 
Finally, if X is instantiated for kx , the elements of the λ evidence vector at the kth

position is set to 1, but 0 otherwise [13].  
In Figure 10.4, ( )1x uπ  and ( )2x uπ  are π messages from the parent-nodes U1

and U2 to X, ( )1Y xπ  and ( )2Y xπ  are π messages from X to the child-nodes Y1 and 
Y2, ( )1Y xλ  and ( )2Y xλ  are λ  messages from its child-nodes Y1 and Y2 to X, and 

( )1x uλ  and ( )2x uλ  are λ  messages from X to the parent-nodes U1 and U2. In a 
multiply-connected network where loops exist, messages may circulate infinitely 
and not converge. To avoid evidence being counted twice in a multiply-connected 
network, alternative inference mechanisms have been proposed. A list of currently 
used inference mechanisms in Bayesian networks can be summarised in Table 10.2, 
which categorises these techniques into exact (modelling all the dependencies in the 
data) and approximate inference algorithms as suggested by Guo and Hsu [16].  

It has been shown that for all exact inference methods, the time complexity is 
exponential to the induced width of the graph (i.e., the size of the largest clique in 
the triangulated moral graph). For networks with many loops and large induced 
widths, the exact solutions can become intractable. In this case, approximation that 
trades the complexity of the running time with the accuracy of the results can be 
used. In addition to the techniques listed in Table 10.2, other approaches are also 
available. For example, it is possible to use orthogonal transformation of variables; 
for instance, using the PCA to remap the data so that the correlations between vari-
ables are minimised [17]. It is also possible to use the hidden node insertion algo-
rithm to represent the arc between two or more child-nodes of the same parent from 
which the link matrices associated with the hidden node can be calculated by an er-
ror minimisation scheme [18]. 
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Figure 10.4 A fragment of a singly connected network to illustrate the mes-
sage passing to/from parents and children of node X.

The use of belief networks with distributed inferencing for WSNs has attracted 
significant interests in recent years. For instance, to illustrate how a Bayesian net-
work can be used to isolate faulty sensor responses, Figure 10.5 demonstrates one 
example of how child-parent dependency is used to indicate noise interference be-
fore and after Gaussian noise is introduced into a subnet of a BSN [19, 20].  
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To address link and node failures combined with resource constraints and asyn-
chrony, Chu et al [40] illustrated the use of FG representation and evolution mecha-
nisms for Multiple Target Tracking which is concerned with estimating multiple 
target trajectories given noisy observations of the target states. The progression of a 
target entering, moving through, and leaving a sensor field is represented by model 
evolution, which consists of the following three mechanisms: spawning (hypothe-
sising the existence of new phenomenon), updating (of both distribution and topo-
logical changes) and pruning (resolving inconsistencies between expected observa-
tions and measured observations by pruning the variable nodes associated with the 
target from the representation).  

A distributed implementation can be derived from this architecture by assigning 
nodes of the graph to sensors based on the so-called agent assignment algorithm. 
Such an approach can be particularly useful for integrating BSNs with ambient 
sensing environments due to the highly mobile nature of the BSNs in entering, trav-
ersing through, and leaving the ambient sensing environments.  

To enhance the understanding of how network topologies may affect the con-
sensus of the MAP estimation, Alanyali et al [41] studied the behaviour of Pearl’s 
belief propagation algorithm in different predefined network topologies. The objec-
tive of the work is to identify communication schemes which guarantee each sensor 
eventually being able to identify a MAP estimate. Other recent research includes 
the use of Nonparametric Belief Propagation combined with Monte Carlo stochas-
tic approximation for self-localisation under noisy sensor measurements [42], and 
the application of loopy belief propagation for asynchronous, rapidly changing en-
vironments troubled with node failures [43]. Recently, Paskin and Guestrin [44, 45] 
have also developed an inference architecture and Robust Message Passing algo-
rithm for probabilistic inferencing in distributed systems. The inference architecture 
is tailored for distributed implementation and consists of a spanning tree formation, 
optimised junction tree formation and message passing. Compared to other ap-
proaches, the algorithm is more robust when it comes to dealing with node failure 
and missing messages.  

10.4 Routing and Self-Organisation 

Routing for WSNs in general is a challenging issue. There are a number of major 
differences to the routing used in existing communication networks. In their review 
of routing protocols for WSNs, Akkaya and Younis [46] discussed the following 
four reasons why routing for a WSN is unique: 

• It is not possible to build a global addressing scheme for the de-
ployment of a large number of sensor nodes, and it is impractical 
to use classical IP-based protocols for sensor networks. 

• Unlike typical communication networks, most applications of 
sensor networks require the flow of sensed data from multiple re-
gions to a particular sink. 
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• The data involved in sensor networks has significant redundancy, 
either due to the built-in redundancy for fault-tolerance of the sys-
tem or due to a cluster of sensors within the local vicinity of the 
target. This redundancy needs to be exploited by the routing pro-
tocols for improved energy and bandwidth utilisation. 

• Wireless sensor nodes generally have very limited transmission 
power, on-board energy, processing capacity, and storage, and 
thus require careful resource management. 

In Chapter 5, we discussed the routing algorithm for ZigBee, which is designed to 
enable reliable, cost effective, low-power, wireless monitoring and control. A Zig-
Bee router can incorporate hierarchical as well as table-driven routing. In hierarchi-
cal routing, frames are routed along the hierarchy defined during network formation 
and are reflected in the network source and destination addresses. This routing 
mechanism, however, is only possible when the network operates as a star or tree 
network. In table-driven routing, on the other hand, frames are routed according to a 
routing table that is set up and maintained using a request-response route discovery 
protocol. This overcomes the suboptimal route problem that arises in hierarchical 
routing.  

In general, existing routing protocols can be classified as data-centric, hierarchi-
cal, and location-based techniques. The use of data-centric protocols is due to the 
fact that it is not feasible to assign global identifiers to each node in a large scale, 
randomly deployed sensor network. For this reason, it is difficult to select specific 
sensor nodes for data query, and data in the sensor network has to be transmitted 
from all sensor nodes within the same deployment region. The significant redun-
dancy involved means it is necessary to develop routing strategies that can make 
use of data aggregation during the relaying of the data.  

The hierarchical routing protocols, on the other hand, are mainly concerned with 
the scalability of the sensor networks; they form sensor clusters so that cluster 
heads can perform effective data aggregation and reduction.  

Finally, location-based routing uses the position information as an addressing 
scheme. This means that a query can be propagated only to a particular region, thus 
significantly reducing the number of transmissions.  

In all of the three routing strategies mentioned above, existing research has di-
rected significant emphasis on low-power, scalable, and fault-tolerant architectures 
[47-50]. For BSNs, energy-aware routing is of particular interest as power con-
sumption and its balanced usage across the BSN nodes whilst maintaining the over-
all system performance are major challenges to their practical deployment.  

For most routing algorithms, the prerequisite for attaining overall system per-
formance is self-organisation. For hierarchical routing, for example, a number of re-
searchers have investigated hierarchical architectures in which local sensor nodes 
can be aggregated into clusters in order to reduce the communication bandwidth 
and power consumption [51]. These clusters are self-organised based on proximity 
to each other or to a known target. For distributed sensor network organisation, a 
number of different architectures have been proposed [52].  
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One effective technique for performing self-organisation of sensors is through 
Multi-Dimensional Scaling (MDS) [53]. MDS refers to a group of techniques for 
finding a low-dimensional representation of a set of high-dimensional data for 
which the distances are preserved. The starting point of MDS is a matrix consisting 
of the pair-wise dissimilarities (or distances as mentioned in Chapter 8) of the enti-
ties. In a simple BSN deployment example, let’s assume that the RF attenuation 
model is given by: 

send
receive

P
P

rα∝ (10.7)

where r is the transmission distance between the nodes and α is the RF attenuation 
exponent. Given the deployment of the sensor nodes with unknown relative sensor 
locations, a pairwise distance *

ijd  between nodes i, j can therefore be derived. From 
these pairwise distance measures, the main idea of MDS is to find a configuration of 
the nodes in a low dimensional space so that the mapped distance in this low dimen-
sional space ijd  is as close as possible to *

ijd . When a square-error cost is used, the 
objective function to be minimised can be written as 
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An effective projection method closely related to MDS is through the use of 
Sammon’s mapping [54] where the errors in distance preservation are normalised 
with the distance in the original space, i.e.,
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It can be shown that the problem stated above can be solved iteratively by using the 
error measure in (10.9). By defining ( )sE m  and ( )ijd m as the mapping error and 
the mapped low-dimensional distance after the mth-iteration, respectively, the newly 
estimated coordinates of the sensor nodes at iteration m+1 is given by  
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where pqx is the qth coordinate component of sensor p, and α is the step size (re-
ferred to as magic factor by Sammon).  

 To demonstrate how this nonlinear mapping can be used for the self-
organisation of BSNs, Figure 10.6 illustrates a group of twenty sensors with their 
pairwise distances given in Figure 10.6(left) based on the signal attenuation model 
given in (10.7). In this figure, the dark (blue) cells represent short distances whereas 
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bright (orange) cells signify large distances between the sensor nodes. Figure 
10.6(right) is the corresponding nonlinear embedded result, showing a near perfect 
reconstruction of the co-locations of the sensors. To further illustrate the ability of 
the algorithm to engage in self-organisation in the presence of sensor failures, Fig-
ure 10.7 shows the nonlinear mapped result of how the defective sensor (3) is sin-
gled out from the sensor cluster, while the relative geometrical configuration of the 
remaining sensors is kept intact.  

Figure 10.6 Result of nonlinear mapping based on the relative distance 
measures between the twenty sensors. (Left) The pairwise signal attenuation 
matrix. (Right) The reconstructed relative spatial configuration of the sensors 
represented in 2D. (See colour insert.)

Figure 10.7 Result of nonlinear mapping based on the relative distance 
measures between the twenty sensors when one of the sensor nodes is faulty, 
illustrating the ability of the algorithm to single out the defective node (node 
3) while the relative geometrical configuration of the other sensors remains 
intact. (Left) Pair-wise signal attenuation matrix. (Right) The reconstructed 
relative spatial configuration of the sensors represented in 2D. (See colour 
insert.)

Based on the self-organising capabilities of the sensor nodes, a number of en-
ergy-aware routing protocols have recently been proposed. For example, the Low-
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Energy Adaptive Clustering Hierarchy (LEACH) protocol [55] is one of the popu-
lar hierarchical routing algorithms based on the received signal strength, and uses 
local cluster heads as routers to the sink. With this method, all data processing such 
as data fusion and aggregation is local to the cluster, and cluster heads change ran-
domly over time in order to balance energy consumption.  

Another energy-aware hierarchical routing protocol is PEGASIS [56] which is 
an improvement on the LEACH protocol: it works by forming chains from sensor 
nodes such that each node transmits and receives from its neighbours and only one 
node is selected from the chain to communicate to the sink. Hierarchical PEGASIS 
is a further extension of PEGASIS and reduces the packet delays. Shah et al [57] 
proposed an energy-aware routing method that extends the directed diffusion 
method by randomly selecting a single path from multiple alternatives to minimise 
energy consumption. Other methods include TEEN [58] which is designed to re-
spond to sudden changes in the sensed signals, and APTEEN [59] which is an ex-
tension of TEEN devised for capturing periodic data, as well as reacting to time-
critical events.  

To encapsulate the main features involved in self-organising networks, Subra-
manian et al described self-organising protocols [60] that include discovery, or-
ganisation, maintenance, and self-organisation phases. Yan et al [61] also esti-
mated the overall energy consumption of a sensor network by using different 
energy-aware routing schemes. It has been shown that performing localised data fu-
sion and information passing is the most efficient way of sensor routing. However, 
as the size of the network grows, the process of aggregating inferences can become 
computationally intractable. They have therefore proposed the use of Multiply Sec-
tioned Bayesian Networks (MSBN) [62, 63] as an efficient partitioning and energy-
aware routing scheme [61]. In this regard, the use of bio-inspired local processing 
algorithms can play a key role in resolving some of the computational complexities 
involved.  

10.5 Security and Self-Protection 

For practical deployment of BSNs, another important consideration of the system 
architecture is security and self-protection. The nature of BSN nodes in handling 
patient information and coordinating real-time data for both wearable and implant-
able sensors, can potentially become an ideal target for malicious intervention. It is 
not difficult to appreciate that the potential impact involved can far exceed the 
damage caused to desktop computers. For this reason, security and self-protection 
are an integral part of BSN design.  

An analogy is often drawn between biological systems and computer systems. 
In terms of security, “virus” is a well known term for security attacks on computer 
systems, as computer viruses share certain characteristics with the real viruses that 
lead to diseases. In biological systems, infectious disease is caused by a biological 
agent, called a pathogen. There are four main types of pathogen; including viruses, 
bacteria, fungi and parasites [64]. A virus is a microscopic parasite [65], which con-
tains only a limited genetic blueprint and is incapable of ordinary reproduction. It 
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can only replicate by hijacking other biological cells and injecting its RNA into the 
cell, which will then cause the cell to create more virus out of its own tissues. A 
bacterium, on the other hand, is a cellular organism that can reproduce itself. It at-
tacks the host by releasing toxins which could damage a cell or block the transmis-
sion of cellular signals. In a BSN, bacteria can be seen as compromised sensor 
nodes that attack the sensor network integrity, whereas virus can be regarded as 
data packets or malicious programs injected into a sensor node with the intent to 
damage the sensor and thus the network.  

An ideal model for such a self-protection system is the human immune system, 
as it is an extremely effective defence mechanism that is capable of preventing the 
onset of infection from approximately 1016 different molecules [66]. In addition to 
being able to identify and destroy antigens autonomously, the immune system is 
able to adapt to virus mutation. From an architectural perspective, the BIS has mul-
tiple layers where each layer is independently equipped with different defence 
mechanisms [64, 67-69] as schematically illustrated in Figure 10.8. They include:  

• Physical barrier: The first line of defence of the immune system is the 
skin, and also mucus coating of the gut and airway which physically 
blocks pathogens from entering the host. In addition, the respiration 
system also helps in keeping pathogens out of the system by trapping 
irritants in nasal hairs, coughing and sneezing. 

• Physiological barrier: The physiological properties of the human body, 
such as temperature and acidity, actually present a hostile environment 
for many pathogens.  

• Innate immune system: This is composed of the build-up of phagocyte 
cells which can engulf pathogens and the complement system which is 
made up of several plasma proteins. The plasma proteins normally cir-
culate in an inactive form and are sequentially activated when an anti-
gen is detected in order to eliminate the microorganism. This leads to 
cytolysis, inflammation, and other immune responses. During an in-
flammatory response, the body temperature will rise and the blood flow 
increase, fever being a possible consequence.  

• Adaptive immune system: This consists of two systems: 

–   Humoral immune system: the production of antibodies by B- 
cells in response to antigens. 

–   Cellular immune system: this recognises and destroys infected 
cells with T-cells. There are two types of T-cells. The killer T-
cells detect infected cells by using T-cell receptors to probe cell 
surfaces and release granzomes to command the cell to become 
apoptotic (commit suicide) [70], whereas the helper T-cells ac-
tivate and control other immune cells where they initiate the 
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production of antibodies by B-cells, control the growth of killer 
T-cells, and activate macrophages (cells that ingest dangerous 
material). 

Pathogens

Skin

Physiological

Innate immunityPhagocytes

Adaptive immunityLymphocytes

Temperature

Acidity

Figure 10.8 The basic architecture of human immune system.

To outline some of the main security considerations for BSNs, we will investi-
gate in this section some of the identifiable threats to BSNs by following a bio-
inspired framework. We will also discuss related protocols in the WSNs and draw a 
parallel between the AIS and the future design of BSNs with effective security and 
self-protection measures.  

10.5.1 Bacterial Attacks  

In this chapter, we will use the analogy of bacterial attack to describe attacks that 
require the subordination of at least one sensor node (or a sensor node emulated by 
a more powerful device, such as a laptop computer) to overcome the self-protective 
system and lead to system failure. Thirteen possible bacterial attacks are described 
in the following section, which include jamming, collision, exhaustion and interro-
gation, selective forwarding, sinkhole attacks, Sybil attack, wormholes, acknowl-
edgement spoofing, HELLO flood attacks, buffer overflow, network scanning, traf-
fic analysis, and false alarms. 

• Jamming Attack

One low level technique to disrupt the service of a wireless network is 
through the jamming of the frequency band of the wireless device. However, 
in the case of BSNs, due to the ubiquitous nature of the application and the 
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short range radio design, jamming can only cause localised interruption to 
the service of the system. In addition, the use of frequency hopping schemes, 
such as the Direct Sequence Spread Spectrum (DSSS), means that the effect 
of jamming is minimal. Figure 10.9 illustrates an example of a jamming at-
tack where a strong radio signal is transmitted by the attacker and the trans-
mission between sensors A and B is disrupted. 

Sensor
B

Attacker

Sensor
A

Figure 10.9 Jamming. 

• Collision 

Similarly to the physical layer attack, attackers can jam the data transmission 
path by corrupting the packets at the link layer [71, 72] . For example, the at-
tacker can disrupt the checksum of a packet causing retransmission, thus 
leading to collisions in the network. Figure 10.10 shows a collision attack on 
the network and how the message is corrupted. 

Sensor
B

Message 1

Messsage 1

Sensor
A

Attacker

Figure 10.10 Collision.

• Exhaustion and Interrogation 

For certain critical messages, the sensor node has to retransmit the message 
repeatedly until it reaches the server, if the message itself or the acknowl-
edgement message is corrupted. In most wireless network protocol designs, 
there are a number of power consuming commands such as network initiali-
sation and time synchronisation. If an attacker continuously broadcasts those 
commands, the battery power of the sensors will soon be exhausted. This re-
peated solicitation of energy-draining responses is called interrogation [72]. 
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Figure 10.11 demonstrates a simple interrogation attack on a network caused 
by sending initialisation commands to the sensor node, with the aim of 
draining the battery power of the sensors. 

Sensor
A

Sensor
B

Initial ise

Initial ise

Sensor
C

Initial ise

Attacker

Figure 10.11 Interrogation.

• Selective Forwarding  

In a multi-hop network, messages are expected to be forwarded to the sink 
through multiple hops. In a selective forwarding attack, a compromised node 
may selectively reject certain messages, or may randomly drop messages, 
thus causing data loss and inducing the use of costly network recovery 
mechanisms [72]. Figure 10.12 shows an example of a selective forwarding 
attack where the attacker only forwards packets 2 and 4 and drops packets 1 
and 3. 

Sensor
B

Messages: 1, 2, 3, 4,…

Attacker

Messages: 2,4,…

Sensor
A

Figure 10.12 Selective forwarding. 

• Sinkhole Attacks

In a sinkhole attack, an attacker attempts to lure network traffic through a 
compromised node, and does this by making the compromised node look es-
pecially attractive with respect to the routing algorithm [73]. Once the sink-
hole is created, the network is opened to other attacks, such as selective for-
warding or eavesdropping. Figure 10.13 illustrates a sinkhole attack in the 
network, where all of the packets from the sensors are routed through the 
malicious node.  
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Attacker

Sensor
D

Sensor
A

Sensor
C

Sensor
B

Figure 10.13 Sinkhole attack. 

• Sybil Attacks

To form a network and create routing tables, every sensor node has to have a 
unique identity. In a Sybil attack [74], a malicious node creates fake identi-
ties, in order that it can appear in multiple places at the same time. It will 
therefore be more likely to be selected as part of a hop for forwarding mes-
sages, thus opening the gate for selective forwarding attacks. Figure 10.14 
shows a Sybil attack where multiple identities of a compromised node are 
sent to neighbouring sensor nodes.  

Sensor
A

Sensor
C

Sensor
B

I’m sensor B

I’m sensor A

I’m sensor C
Attacker

Figure 10.14 Sybil attack.

• Wormholes  

In a wormhole attack, attackers cooperate to simulate a low-latency commu-
nication link [72, 75]. Messages received by one of the attackers will be re-
played by the other one, so that the message appears to be forwarded from a 
nearby hop. As such, the neighbouring sensor nodes will favour the attacker 
for routing [72], similarly to a sinkhole. In addition, the network will be se-
verely disrupted when the wormhole is removed. An example wormhole at-
tack is illustrated in Figure 10.15, where the compromised nodes simulate a 
short link between them with a false distance of 1, leading to a sinkhole 
where all of the traffic is routed through the wormhole nodes. 
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Sensor
A

Sensor
C

Sensor
B

Sensor
D

Attacker
Distance=1

Distance=2

Distance=3
Distance=2

Distance=3

Attacker

Figure 10.15 Wormhole attack.

• Acknowledgement Spoofing  

To ensure the integrity of the link and improve the reliability of the data 
transmission, acknowledgement messages are often required from the re-
ceiver. In an acknowledgement spoofing attack, the malicious node spoofs 
acknowledgement messages aiming to trick the sender into believing that a 
weak link is strong or a dead node is alive [73]. As typical routing protocols 
select hops based on the reliability of the link, the attacker can effectively 
launch a selective forwarding attack by encouraging the target node to 
transmit packets through those weak links. Figure 10.16 illustrates an exam-
ple acknowledgement spoofing attack, where an acknowledgement message 
is sent by the attacker who has overheard the message sent to the dead sensor 
node C. 

Sensor
C

Message to C

Attacker

Sensor
A

Acknowledge

Figure 10.16 Acknowledgement spoofing.

• HELLO Flood Attacks

To enable the introduction of new sensors and update the routing table dy-
namically, many wireless network protocols require the new sensor to 
broadcast an announcement message, the HELLO message, to notify its 
neighbours of its request to join the network. In a HELLO flood attack, an 
adversary broadcasts powerful HELLO messages to many nodes in the net-
work, so that every node thinks the attacker is within a short radio range 
[73]. This will cause a large number of nodes to attempt to use the attacker 
as a hop to route messages, thus confusing the entire routing system. The 
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HELLO attack is depicted in Figure 10.17 as a strong HELLO message is 
sent to each sensor node to trick them into making the malicious sensor a 
node for routing. 

Sensor
A

Sensor
C

Sensor
B

Sensor
D

HELLO

HELLOHELLO

Attacker

HELLO

Figure 10.17 HELLO flood attack. 

• Buffer Overflow Attacks

As limited storage is provided by the sensor hardware, flooding a sensor 
node with messages will lead to buffer overflow and subsequently crash the 
sensor node. For example, Figure 10.18 shows a simplified buffer overflow 
attack on a sensor node. 

Sensor
A

Attacker

Buffer
1
2

overflow

Figure 10.18 Buffer overflow

• Network Scanning 

Through scanning the network and obtaining the network topology, the at-
tacker can locate a particular sensor node or even the individual wearing the 
sensors. 

• Traffic Analysis 

As the network traffic pattern is often used to detect and defend attacks on 
the network; through observing the traffic patterns, the attacker can poten-
tially compromise the security defence of the system. 

• False Alarms 

Being a pervasive monitoring system, BSNs are required to accurately cap-
ture abnormal events and transmit alarm messages to the system. By generat-
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ing numerous false alarm messages, an attacker can effectively undermine 
the system’s ability to detect genuine abnormal events.  

10.5.2 Virus Infection  

In biological virus infection, the virus hijacks a cell by injecting its genes into the 
cell. Similarly, an attacker can use a compromised sensor node like a virus and in-
ject malicious data packets or programs into sensor nodes. Unlike bacterial attacks 
which do not alter the internal properties of the sensors, virus infections damage the 
system by altering the parameters or programs of the nodes. The following section 
outlines seven possible virus infections, which include corrupting the routing in-
formation, misdirection, time synchronisation corruption, worms, Trojan horse in-
stallation, backdoor installation and hoaxes.  

• Corrupting the Routing Information

The most direct and effective approach to attacking a network is to corrupt 
the routing information. By spoofing, altering, or replaying the routing in-
formation, attackers can severely damage the sensor network by creating 
routing loops, attracting or repelling network traffic, and making false parti-
tions in the network [73]. A simple example of corrupting the routing is 
shown in Figure 10.19, where invalid routing information is sent to sensor 
nodes.  

Sensor
A

Sensor
BRouting table

A->C, C->B

Sensor
C

Attacker

Routing table
A->A, B->C

Routing table
A->A, B->C

Routing table
A->A, B->CBase

Station

Figure 10.19 Corrupting the routing information.

• Misdirection

In a misdirection attack, an attacker corrupts the message forwarding paths 
by advertising false routing updates which could isolate sensor nodes or 
flood a victim. Figure 10.20 shows an example of a misdirection attack 
where invalid routing updates are sent to Sensor A and cause it to direct the 
data incorrectly. The message is lost as C is too far away from node D. 



10. Autonomic Sensing  357

Attacker

Sensor
B

Sensor
D

Routing path
A->B->C->D

Sensor
C

Sensor
A

Figure 10.20 Misdirection.

• Time Synchronisation Corruption  

Due to the high bandwidth requirement and limited battery power available 
to miniaturised sensors, one approach to developing an energy efficient net-
work is to implement a scheduling or Time Division Multiple Access 
(TDMA) scheme for data transmission, such as the TD-DES protocol pro-
posed by Cetintemel et al [76]. With TDMA, the power consumption can be 
optimised by switching on the radio only when it is required. Collision is 
also avoided with this scheme. As the timing information of the TDMA pro-
tocol is crucial for scheduling, in order to launch an attack on such a net-
work, an attacker can simply corrupt the time synchronisation. One method 
of achieving this is to broadcast invalid synchronisation commands to the 
sensors, where a slight offset of the time could potentially lead to collisions. 
In addition, if dynamic timeslot allocation is enabled on the network, mali-
cious sensor nodes can request an excessive amount of bandwidth and cause 
the scheduling to fail. Figure 10.21 illustrates an example time synchronisa-
tion attack where the corrupted time synchronisation message t=7 is sent to 
the sensor nodes when the actual time is only t=5.

Sensor
A

Sensor
C

Sensor
B

t=7

t=7
t=7

t=5

Attacker

Figure 10.21 Time synchronisation corruption attack.

• Worms  

Although very limited resources are available on a wireless sensor, a net-
work worm attack is possible on a sensor node. Dynamic reprogramming of 
a sensor node is possible via recently developed software tools, such as Del-
uge [77]. Based on its distributed source code dissemination method, worms 
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can be easily created and spread across the network based on the program 
distribution framework, thus causing severe damage to the system.  

• Trojan Horse  

As with worms, Trojan horse programs can be transmitted to the sensor 
nodes to corrupt sensor data, override control of the sensor node, or damage 
the sensor network by using the compromised node. 

• Backdoor

Programs or routines can be uploaded to the sensor nodes by the attackers to 
open up a backdoor for enabling future access to the network and data. 

• Hoaxes  

An attacker can compromise network security by sending false warning 
messages regarding security attacks, which can not only trigger energy con-
suming recovery or protection processes, but also reduce the ability of an 
adaptive protective system to prevent further virus attacks. As the system 
may disregard the hoax attacks after identifying them as being hoaxes, the 
system may fail to capture them when they become real attacks rather than 
hoaxes. 

10.5.3 Secured Protocols 

Unlike traditional computer systems, very limited resources are available for BSN 
nodes, and traditional cytological algorithms, encryption techniques, and secure 
protocols cannot be directly applied to WSNs and BSNs. Currently, there are a 
number of secured protocols that have been developed within the WSN community. 
One example of a secured protocol design for WSN is the Security Protocols for 
Sensor Networks (SPINS) introduced by Berkeley. It mainly consists of two com-
ponents: µTESLA (micro version of the Timed, Efficient, Streaming, Loss-tolerant 
Authentication Protocol) and SNEP (Secure Network Encryption Protocol) [78] for 
unicast and broadcast messages. In addition, to cater for the ad hoc nature of sensor 
networks, different key distribution schemes, such as the pairwise key distribution 
method, are proposed. 

SNEP

The SNEP protocol utilises the RC5 block cipher [79] to encrypt unicast messages. 
To fit the RC5 onto the severely constrained sensor node, SNEP implements only a 
subset of functions of RC5 [78]. To ensure the confidentiality of the data, a seman-
tic security mechanism is imposed whereby a shared counter is used to encrypt the 
data with the block cipher. However, instead of transmitting the counter, each sen-
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sor of the node pairs keeps a monotonically increasing counter to minimise the 
overhead imposed. As shown in Figure 10.22, the block cipher is applied to the 
monotonically increasing counter which will then be XORed with the plaintext to 
generate the ciphertext. The same process is also applied to decrypt the message 
[78]. In this way, an eavesdropper will not be able to reconstruct the messages and 
the counter used can also guarantee the freshness of the messages. In addition, a 
separate master key is used in each sensor node, so that the authentication of the 
messages can be ensured. To authenticate the message, the Cipher Block Chaining 
Message Authentication Code (CBC-MAC) technique is adopted and the same 
block cipher is used to compute the Message Authentication Code (MAC). 

Plaintext

Cipher
Key

Counter i

Sensor A

Plaintext

Cipher
Key

Counter i

XOR

Sensor B

CiphertextXOR

Figure 10.22 SNEP: Counter mode encryption and decryption.

µTESLA

Although SNEP provides secure communication between a pair of sensor nodes, 
SNEP does not support message broadcasting due to the use of different master 
keys in each sensor node. The TESLA, which is a micro-version of the TESLA 
protocol [80], is proposed for secured data broadcast [78]. In TESLA, the base sta-
tion generates a chain of secret keys where the last key of the chain is picked ran-
domly and all the other keys are then generated by applying a one-way function F,
as shown in the following equations: 
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=
=
= = −

(10.11)

As function F is a one-way function, any key from 0 to i-1 can be derived by the 
key Ki, but none of the other keys (Ki to Kn) can be determined. To securely broad-
cast messages, the TESLA utilises a loose time synchronisation scheme where dif-
ferent keys are used to encrypt the packets as shown in Figure 10.23, where key Ki
is used to encrypt the packets sent in time slot ti. In addition, the initial key K0 is 
first disclosed to the sensor nodes by using a secured link provided by SNEP. Sub-
sequent key Ki is not disclosed until a certain interval after the time interval ti. As 
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shown in the figure, K1 is disclosed at t3, and once K1 is disclosed, the receiver can 
then authenticate the data packet 1 and 2 by verifying that K0=F(K1).

As the initial key has to be distributed as a unicast message individually to each 
sensor node, this process can be energy inefficient. Liu et al proposed encoding the 
initial key K0 onto the sensor nodes before deployment instead of distributing the 
key wirelessly [81]. In addition, Liu et al proposed a hierarchical organisation of 
the keys to reduce the memory required in the base station to store the key chain. 

Data1 Data2

t1 t2 t3 t4

k2k 1 k 3

Data3 Data4 Data5 Data6

t0

K0 K1

Figure 10.23 µTESLA data authentication.

Ad Hoc Network

The SPINS protocols described above are mainly designed for sensor networks with 
a static architecture. For BSN applications, however, sensors are often distributed in 
an ad hoc fashion where sensors may join or disconnect from sensor clusters dy-
namically. For instance, when a patient with on-body sensors is walking through a 
care home equipped with environmental sensors, the body sensors may attach to 
certain clusters of the care home network depending on the location of the patient. 
In addition, instead of routing all of the messages back to the server, messages 
could be requested by certain sensors in an ad hoc network, and sensors can also 
broadcast messages to other nodes. In the case of a patient in a homecare environ-
ment, environment sensor data can be requested by the on-body sensors to validate 
the findings of wearable sensors, e.g., to confirm if the patient has had a fall. In 
such scenarios, SPINS-like approaches will not be able to provide the necessary se-
cured ad hoc links.  

Due to the limited resources of the sensor nodes, a symmetric key system is of-
ten adopted for ad hoc WSNs where a key is shared between the sensor nodes for 
data encryption and authentication. One efficient key distribution approach is the 
pairwise key management system, as proposed in Liu et al and Du et al [82-84]. In 
a pairwise key management system, a selection of keys are assigned to each sensor 
node initially [85]. To form secured links, sensor nodes announce and compare their 
keys, and a connection is established if the same key is found on both sensor nodes. 
Figure 10.23 illustrates how secured links are formed by using the pairwise key 
management scheme. As shown in the diagram, sensors A and B share the same key 
K4. Therefore, a secured link is established between the sensor nodes. On the other 
hand, as no common key is found between sensors B and C, no direct connection 
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can be established. However, since sensors A and C share the same key K2, a se-
cured link can be established between A and C. Once secured links are formed, new 
keys can be generated to connect disjointed nodes, such as nodes B and C in Figure 
10.24. 

Sensor A

K1

K2

K4

K9

Sensor B

K4

K3

K8

K6

Sensor C

K0

K5
K2

K7

Figure 10.24 A schematic illustration of the pair-wise key management scheme.

With the above key sharing scheme, a subset of nodes can potentially be opened to 
security threats as each sensor node contains a subset of keys. To improve the resil-
ience against attack on the subnet, an improved pairwise scheme is proposed by 
Chan et al [86]. Instead of connecting nodes if only one common key is found, the 
proposed method requires the nodes to share a certain number (q) of keys in order 
to form a direct link. Figure 10.25 illustrates the improved keying scheme with the 
q-composite key distribution scheme. In this case, q=2 and a secured link is formed 
between sensors A and C as they both share K2 and K4.
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Sensor B
K1

K2

K4

K9

K4

K3

K8

K6

Sensor C

K4

K5
K2

K7

Figure 10.25 Q-composite key distribution scheme.
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Although an asymmetric key scheme is often considered to be too expensive for 
miniaturised sensor nodes [87], it is argued that public key cryptographic key gen-
eration is necessary for WSNs [88]. In addition, Malan et al demonstrated the pos-
sibility of using asymmetric key distribution schemes for sensor networks [89], 
where the Elliptic Curve Cryptography key generation was implemented on a 
MICA-2 sensor node.  

10.5.4 Self-Protection 

As the sensor nodes becoming increasingly miniaturised and ubiquitous, it will be 
difficult to defend the BSN against security attacks with conventional means. To ef-
fectively protect BSNs from both virus and bacterial attacks, a proactive, preventive 
and autonomous approach must be taken. One possible approach to introducing 
self-protection to BSNs is to follow the general principles of the human immune 
system as illustrated in the concept of a bio-inspired Artificial Immune System (AIS) 
introduced recently [90, 91]. For example, Nishiyama et al proposed a network se-
curity system based on an immune system, where agents are developed for detect-
ing and rejecting intrusion by means of cooperating with each other [92]. Harmer et
al proposed an AIS-based agent system for computer security applications [93]. 
Based on the human immune system, AIS mainly implements three main protective 
mechanisms:  

• Recognising antigens: The BIS recognises antigens by using the bio-
receptors of the immunity cells, and it can recognise known antigens 
with only partial matches, meaning that it can detect marginally mu-
tated antigens. In order to incorporate this very effective defence 
mechanism, AIS often implements a certain fuzziness in recognising 
viruses and only a certain short sequence of the virus is examined [90]. 
Various matching rules for virus identification are proposed by Harmer 
et al [93].  

• Eliminating antigens: In the BIS, antibodies neutralise antigens by 
binding to the microorganisms, and T-cells kill infected host cells to 
prevent spreading of the virus. In AIS, once a known virus is detected, 
conventional virus recovery processes will be used to remove the in-
fected entity from the system, such as destroying the infected file. To 
prevent self-replication, a “kill signal” mechanism for AIS was pro-
posed by Kephart which isolates the infected host and thus prevents it 
from passing its infected message to its neighbours [90].  

• Adapting to new antigens: Based on the training mechanism used by 
the BIS to train T-cells to recognise antigens, a negative selection 
mechanism was proposed by Forrest et al which enables the system to 
identify antigens while not attacking its own cells [91]. In addition, 
Kephart proposed the use of virtual environments and “decoy” pro-
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grams to analyse the characteristics of the virus and develop antibodies 
accordingly [90].

Since the architecture of the BSN is much closer to the biological system than that 
of personal computers, the self-protection systems of BSNs could be modelled 
closer to the BIS. For instance, instead of the centralised approach in certain AIS 
methods, the distributed characteristics of the BIS can be adopted by the BSN. To 
explain the immune system concept for BSNs, the layered architecture of the BIS as 
shown in Figure 10.26 can be used. This includes: 

• Physical barrier:

–  Sensor casing will provide physical protection against tamper-
ing, and for implantable sensors, biocompatible casing will be 
required to protect the sensor from the human immune system.  

–  The short range communication design of the BSN will limit 
the spread of antigens and effectively lower the probability of 
being infected. 

• Physiological barrier:

–   A secured network protocol will be able to identify and pre-
vent certain service attacks. This can create an uninhabitable 
environment for antigens, like the physiological barrier of in 
the BIS. 

– The use of anonymity and transmitting raw sensor data could 
discourage eavesdroppers, because deriving the identity of the 
subject and the context of the data will require significant 
amounts of effort and time. 

• Innate immune system:

–  To engulf an antigen, the neighbouring sensor nodes can form 
a guard to isolate the attacker. For instance, the sensor nodes 
can act as sinkholes to the antigen, so that malicious packets or 
programs cannot be distributed in the network 

–  The BIS inflammation concept can be used in BSNs to slow 
down the spread of antigens.   

• Adaptive immune system:

–  In order to recognise antigens, instead of keeping a record of 
all known antigens at a central storage, each sensor node could 
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hold one or more sets of antigen information, similarly to the 
B-cells in the BIS. To investigate a suspicious packet or pro-
gram entity, the signature of the packet or program (such as 
the checksum), could be broadcast to the B-cells to let them 
compare it with the known antigen records. 

–  In eliminating infected hosts, the infected node can be reset to 
a trusted program or even switched off upon receipt of the self 
destruct message from a T-cell, as there will be redundant 
nodes around that would serve its same function, similarly to 
biological cells. 

–  To adapt to new antigens, like the immune system proposed by 
Kephart [90] a virtual environment can be created by allocat-
ing a small group of sensors to extract the characteristics of the 
virus. In the virtual environment, a decoy sensor node (honey-
pot) can be assigned to lure the virus to infect the node, and 
then the characteristics of the virus can be extracted by moni-
toring the infected node’s interaction with other nodes in the 
virtual environment. 

Figure 10.26 The architecture of a BSN immune system.

Although having an immune system for BSNs can provide protection against at-
tacks, it must be noted that the nature of the immune system could cause adverse ef-
fects to the network itself in addition to the extra resources required for providing 
this function. Overreaction to certain stimuli, analogously to the case of human al-
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lergies, could bring certain parts or the whole BSN system into disarray. Neverthe-
less, these problems represent an interesting research issue for the BSN community 
in the coming years.  

10.6 Conclusions 

In this chapter, we have discussed the use of autonomic principles for self-healing, 
self-organisation, and self-protection in BSNs with effective fault tolerance and 
self-protection. Due to the inherent complexities involved in managing a large 
number of wireless sensors, bio-inspired sensing and networking is an important 
area of study and most of the work we discussed in this chapter only represents a tip 
of the iceberg.   

One of the key principles derived from biological systems is the effective coor-
dination that is possible through some very simple mechanisms in information ex-
change and message passing; and how this can be used to achieve a global behav-
iour that is adaptive and self-governing. In sensor networks, in addition to sensor 
noise, bias and node failures, uncertainties due to an imperfect understanding of the 
system to be monitored, as well as incomplete knowledge of the state of the envi-
ronment at the time of the interaction are important factors to consider. For self-
organisation, as well as fault detection and self-healing, belief propagation repre-
sents an attractive method for implementing some bio-inspired concepts in sensor 
networks. This is because the method has a compact representation, is distributed, 
and robustness to noise and network degradation. It has also been shown that belief 
propagation is highly effective for asynchronous communication and is suitable for 
heterogeneous networks.   

In this chapter, we have outlined some of the basic principles of message pass-
ing in a belief network. The main benefits of probabilistic graphical representation 
to model sensor networks also include the ease of integrating heterogeneous data 
from different sensors, the possibility of continuously improving the accuracy of the 
system by learning from available data, and the advantage of reasoning under un-
certainty, thus permitting the incorporation of high-level and domain specific 
knowledge into the distributed inferencing framework.  

It is worth noting that the self-healing mechanism we discussed in relation to 
autonomic sensing is often referred to as the survivability of the system. One of the 
key emphases of self-healing is how the system can perform gracefully under dete-
riorating environmental conditions and system hardware. As mentioned in previous 
chapters, whilst the perpetual powering of the sensor nodes through energy scav-
enging remains an active research topic, our current focus should be directed at the 
effective processing and routing strategies that can maximise the overall power ef-
ficiency. For the practical deployment of BSNs, it is also important to consider a 
proactive approach towards fault tolerance, a strategy that is often relied upon by 
biological systems to improve their immunity to system failures.   

As mentioned in the introduction to this chapter, the focus of our discussion has 
been mainly restricted to the illustration of some of the design principles of auto-
nomic sensing based on the features derived from the ANS and BIS. Our aim here 
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is not to reverse-engineer these biological systems but only to investigate some of 
the design principles so that plausible computational architectures suitable for the 
BSN can be developed. In this regard, the discussion about security and self-
protection is only intended to outline the challenges, as well as the opportunities, 
faced by the BSN research community.  
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11.1 Introduction 

The development of small sensor systems, often for use in distributed networks, has 
been actively pursued for more than 50 years. The stimulant to this activity, as with 
most modern technology, was the invention of the transistor that made miniaturiza-
tion possible. The earliest wireless sensor devices were developed for use in a range 
of applications, including wireless animal tracking and medical instrumentation [1]. 
Indeed there was considerable activity in the field during the 1950s and '60s [2], but 
research activity appeared to recede in subsequent years. In the 1970s and '80s, the 
microelectronics industry rapidly developed after the invention of the first inte-
grated microprocessor [3]. The focus then was on computing, but in the 1990s there 
was a rapid growth in consumer electronic products, exemplified by mobile com-
munications and the Internet.  

However, in the late 1990s researchers and practitioners began to realize the po-
tential for personalized wireless systems incorporating location sensitive informa-
tion and sensor technologies. In essence, these devices owe much to the early work 
of pioneers, but depend heavily on new technologies that have only recently be-
come available, such as System-on-Chip (SoC) and mobile communications. The 
emerging wireless sensor systems can be carried, worn or implanted into the user 
and have found various expressions in wireless integrated microsystems [4, 5], “Pi-
coradio” [6] and medical devices [7-9]. One of the most significant distinguishing 
aspects of these technologies was the integration of sensor functions including loca-
tion (e.g. GPS), environmental sensors and body sensors. 

The concept of building systems with many sensors that are closely integrated 
became prominent with the invention of the electronic nose [10]. Whilst not a wire-
less device, or even a networked one, the electronic nose relied upon the collection 



374    Body Sensor Networks 

and interpretation of multisensor data. This concept lies at the core of many BSN 
systems where it is generally assumed that more data from more sources is a key 
requirement. The range of sensors that can be used in such multisensor systems is 
diverse and varied. The main sensor types are summarised as physical, chemical 
and biological. Physical applications include meteorological measurement [11], 
seismographic measurement [12], environmental sensing [13, 14], imaging [15], lo-
cation [16], and so on. Chemical measurements rely on a range of techniques, and 
several integrated sensor technologies have been developed [17]. Biosensing has 
been driven by the laboratory-on-a-chip revolution. Many applications are found in 
DNA analysis [18], amongst others, but have yet to be fully implemented in wire-
less systems. 

Microsensor devices are exposed to varied constraints that determine their size 
and capability. For example a body network device need not be especially small, 
but a medical implant often has rigorous size constraints that must be met. Further-
more, scaling can have a practical impact. A wireless system designed to operate in 
close proximity to the human body must not exceed regulated power limits, hence 
its range is compromised, especially if it is an implant. Wireless technology is also 
constrained by difficulties such as antenna design [19]. In another example, micro-
fluidic systems allow analytical tools/sensors to complete assays more rapidly due 
to the relationship between size, diffusion and time [20]. 

A continuing theme in the execution of microsensor systems has been the use of 
Application-Specific Integrated Circuits (ASICs). Typically the ASICs that are used 
are less than 100,000 transistors and are therefore quite small by the standards of 
SoC designs. This is partly because the ASICs used in sensors are designed by re-
search groups with relatively modest resources, but it is also because these designs 
are appropriate to the task that is required of them. Since wireless sensor microsys-
tems are usually required to be small, it is often the case that functionality is 
stripped to a minimum, whereas in modern consumer electronics the trend is often 
in the opposite direction. Applications for this methodology have been found in 
medical implants [21] and electronic noses [22]. 

The application of IC and ASIC technologies has also been extended beyond the 
boundaries of straightforward electronic design. There are considerable advantages 
in being able to build the sensors on to the same substrate as the electronics. This 
has been achieved with many chemical sensors [17], and the technology has been 
used to build sophisticated gas sensors [23] and pH sensors [24]. Such technologies 
are quite expensive, but from the point of view of miniaturization they eliminated 
package interconnections and are therefore of particular advantage to sensor micro-
systems. 

Wireless sensor microsystems offer very diverse functionality, and this brings 
about a range of technical design problems. Design skills include sensors, ASICs, 
wireless, low power, packaging, software, networking and power sources. These 
problems become more challenging the smaller the final device must be (Table 
11.1).  In the remainder of this chapter we will cover a range of design topics that 
are of relevance to wireless microsystem designers irrespective of their intended 
application. The material will be covered in the context of the ingestible laboratory-
in-a-pill device that offers a particularly challenging case study containing many of 
the attributes one might expect to find in a wireless microsystem. 
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Table 11.1 Design challenges for wireless sensor systems. 

Features Technical Challenges 

Size Device required to work in constrained space 

Power Batteries are often quite big; power scavenging is still premature 

Cost Not mass market technology so products still very expensive 

Lifetime Devices need to operate over extended periods; difficult due to 
power and drift 

Wireless Must conform to standards; radio environment often complex; 
size constraints; tissue absorptions 

Sensors Size constraints; performance changes over time and environment 

Electronics Partitioning into system nodes; choice of analogue vs digital; 
hardware vs software 

Packaging Assists miniaturization; must conform to standards of applica-
tions (e.g. medical) 

11.2 The Diagnostic Capsule 

In order to diagnose a wide range of GastroIntestinal (GI) dysfunctions, it is ex-
tremely useful to be able to make measurements of the conditions inside a patient’s 
gut. Conventional methods include noninvasive techniques such as radiography (X-
ray, Computed Axial Tomography (CAT), Positron Emission Tomography (PET)), 
ultrasonography and Magnetic Resonance Imaging (MRI). Noninvasive methods 
cannot present any direct information on the biochemical environment within the 
GI tract, hence endoscopy, a relatively invasive technology, has gained clinical ac-
ceptance to view the GI tract and perform biopsies for later analysis [25]. Sedation 
or a general anaesthetic is often required for animal endoscopy, and the consider-
able inconvenience and irritation of this technique discourages patients from under-
going the procedure [26]. The technique is also unsuitable for monitoring GI dys-
function since it cannot measure the GI tract in real-time over an extended period 
[27]. As a consequence, there is growing interest in the application of wireless sen-
sor microsystems for use in capsule or wireless endoscopy. 

In 1957, the first two radiotelemetry capsules were developed independently in 
Stockholm [28] and New York [29]. They measured approximately 10mm in di-
ameter and 30mm in length. Both were designed to measure pressure using a dia-
phragm to move an iron core inside a coil. The coil was the tuning element of a sin-
gle-transistor oscillator circuit, the frequency of which therefore depended on the 
pressure. The circuit used by Mackay and Jacobson is shown in Figure 11.1 [28]. It 
produced bursts of oscillations in the 100kHz range; the frequency was a function 
of pressure, and the burst repetition rate a function of temperature. This ingenious 
circuit was capable of measuring both pressure and temperature, which were re-
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corded using a standard radio receiver. Current suppliers of this technology include 
Given Imaging [15], Olympus, Medtronic, and Intellisite [30, 31]. Many research 
works still aim to advance the state of the art [21, 32-36]. A temperature monitoring 
pill has even been developed by NASA for use by astronauts [37]. 

1.5 V
10 µF

iron core

Figure 11.1 Circuit diagram of a pressure-sensitive single-transistor oscillator. 

11.3 Applications for Wireless Capsule Devices 

Whilst this chapter is aimed at providing a general review of some of the issues that 
concern the design of wireless microsystems, in practice, real designs are deter-
mined by the application for which they are intended. With this in mind, we provide 
a brief outline of the application domain of our exemplar microsystem. 

11.3.1 Human Medicine 

Medical devices must first satisfy the requirement for clinical efficacy. Because of 
this the capsule devices that have been developed to date have only a simple range 
of sensor capabilities due to the relative lack of medical data that would normally 
encourage the development of more sophisticated tools. At present the dominant 
measurement capabilities are image acquisition, temperature and pH, although de-
vices capable of sample retrieval, pressure sensing and dissolved oxygen measure-
ment, amongst others, have been explored. 

pH is one of the most important parameters to measure in any biological system. 
In terms of pH measurement, capsule-based systems have been employed most suc-
cessfully to diagnose Gastro-Oesophageal Reflux Disease (GERD) [38]. These sys-
tems require a tethered capsule to monitor whether stomach acid is refluxing back 
into the oesophagus and causing the burning sensation commonly known as heart-
burn. Measurements of pH in the GI tract using “flow-through” capsules have also 
been used to study Inflammatory Bowel Diseases (IBDs) such as Crohn’s disease 
and ulcerative colitis [39, 40]. Knowledge of the pH profile along the GI tract has 
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also led to the development of drug capsules that dissolve in alkaline environments, 
ensuring that the drug is only released beyond the acid environment of the stomach. 

In 1959, Wolff [41] started to develop radiotelemetry capsules that could be 
mass produced, in order to reduce the cost and increase the quantity available for 
clinical trials. As well as a pressure-sensitive capsule, his laboratory developed cap-
sules for measuring temperature and pH, all based on single-transistor oscillators. 
The temperature-measuring capsule used a coil wound on a core made from a 
nickel-iron alloy, which exhibited a large change in permeability with temperature. 
This changed the inductance of the tuning coil and shifted the frequency of trans-
mission in a manner similar to the pressure sensor of Mackay [28]. The pH-
measuring capsule used a glass electrode connected to a silicon diode, which oper-
ated as the tuning element for the oscillator. The potential of the electrode varied 
with pH and this voltage changed the capacitance of the diode. A reference elec-
trode, needed to complete the pH circuit, was also included in the capsule, which is 
shown in Figure 11.2. A similar pH-sensitive capsule based on a glass electrode 
was described by Watson and Kay [42]. It was used in the first medical study to 
plot the pH profile along the entire length of the GI tract [43]. 

ferrite core

tuning
inductance

aerial coil

transistor

capacitors
and
resistors

battery

reference
electrode

silicon diode

glass electrode

Figure 11.2 Diagram of the cross-section through a pH-sensitive radio-
telemetry capsule.

These early capsules were prone to failure due to the ingress of moisture 
through the epoxy, which was used to seal the glass electrode in place. An im-
proved design that housed the battery and electronics inside the glass electrode was 
developed by Colson [44]. The receiving antenna array was embedded in a cloth 
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band worn around the waist. Data was collected on a portable solid-state recorder 
that allowed the patient to carry out their normal activities. This equipment was 
used in a much larger study of 66 subjects [45]. 

For conditions such as GERD, it is necessary to measure the pH at a fixed loca-
tion, rather than measuring a flow-through profile. Early studies achieved this by 
“lowering” the capsule into position on a piece of thread, and fixing the free end to 
the subject’s cheek when the capsule was in position. More recently, a capsule has 
been developed that is temporarily anchored to the wall of the GI tract using an en-
doscopic delivery system [38] that relatively invasive. A vacuum pump sucks tissue 
into a well in the capsule and a pin is pushed through the tissue holding it in place 
after the delivery system has been removed. This capsule is 6mm in diameter and 
25mm long, and it uses an antimony pH electrode. It transmits to a pager-sized re-
ceiver, allowing patients to continue their normal activities without restriction of 
diet or exercise. 

Commercial radiotelemetry capsules have been developed that have the poten-
tial to replace conventional fibre-optic endoscopy and colonoscopy. The M2A cap-
sule from Given Imaging Ltd. contains a single-chip Complementary Metal-Oxide-
Semiconductor (CMOS) image sensor, an ASIC for video transmission, and white 
Light-Emitting Diodes (LEDs) for illumination [15]. The data is transmitted to an 
array of eight antennae worn on a belt that also allow the capsule’s position to be 
localised, it is claimed, to within 3.8cm. The system is particularly well suited to 
detection of bleeding and the software contains blood recognition algorithms to 
automatically highlight suspect areas. To date it has been used in numerous clinical 
trials and as a diagnostic tool [46]. 

11.3.2 Animal Applications 

Data-logging telemetry capsules have been used to measure the pH inside the stom-
ach of small animals [47] including penguins [48]. The same technology has been 
used in cattle where the capsule was located in the reticulum, which is the second 
stomach of a ruminant, to measure the effect of diet on subclinical acidosis [49]. In 
fact, livestock monitoring may well be the major market for capsule-based pH sen-
sors. When combined with temperature, the data could be used by farmers to opti-
mise feeding patterns, to detect illness, and to manage breeding. There is already a 
system available that combines temperature measurement with a Radio-Frequency 
Identification (RFID) chip that is unique to each animal. RFID tagging of livestock 
provides guaranteed information on the supply of meat from “farm-to-fork” and 
standards have been developed for the manufacture of such devices and systems 
[50]. 
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11.4 Technology 

11.4.1 Design Constraints 

There are clearly tight constraints placed on the design and implementation of a 
capsule-based diagnostic system. The overall dimensions should be small enough to 
allow the device to pass through all the GI sphincters with relative ease, including 
the lower oesophageal sphincter and the pyloric sphincter. The capsule must also be 
cheap to make since it will only be used once. Low power consumption is a re-
quirement to minimise battery (hence overall) size and increase operating time. A 
capsule might take a maximum of 8 hours to traverse the upper alimentary tract and 
the small intestine, while a complete passage through the GI tract might take up to 
32 hours. Using readily available silver oxide battery technology, an energy storage 
density of 500mWh/mL can be achieved [51], thus a suitable source, such as two 
SR48 cells (110mWh each) could deliver enough energy to complete small intesti-
nal measurements if the average power consumption was less than 20mW. 

The data sampled in the GI tract by a capsule must be retrieved accurately and 
securely. This usually means that the data must be wirelessly transmitted and cor-
rectly received by a device worn by the patient. There are a number of radio com-
munication standards encompassing several international Industrial, Scientific and 
Medical (ISM) telemetry bands (pan-European medical device frequency alloca-
tions [52], and the US Federal Communications Commission frequency allocations 
for biomedical telemetry and ISM devices – regulations S5.150, US209 and 
US350). The main bands of interest are at 418MHz, 434MHz, 868MHz and 
915MHz.  

As with all measuring devices, the user must be confident that the data retrieved 
is accurate. The problems of accuracy can be dealt with via the normal techniques 
of instrument design and calibration. However, an additional constraint for wireless 
devices is that the data must be secure. Since capsule devices operate in the unli-
censed ISM frequency bands there is a severe risk of interference that could be par-
ticularly dangerous in the context of a medical device. Of necessity the sensors and 
signal acquisition electronics require analogue circuits. In the early devices the en-
tire design was analogue, making the data transfer from the devices extremely inse-
cure. However, modern electronic techniques permit designers to convert the ana-
logue signal to the digital domain within the capsule, enabling the use of secure 
digital wireless techniques. These techniques ensure that data from any given cap-
sule can be uniquely identified to avoid attributing diagnostic information to the 
wrong individual. Details of such designs, and others concerning wireless sensor 
systems, are discussed by Nikolaidis et al and Park et al [53, 54]. 

11.4.2 Microsystem Design 

Whilst there is no single way to build a capsule system using current technology, 
many of the aspects of a complete solution are illustrated in Figure 11.3. In the cap-
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sule the sensors are the data gathering devices that are connected to the electronic 
instrumentation in order to acquire the signal. In the earlier devices all the data was 
managed by analogue electronics, but more recent devices convert the signals into a 
digital representation. In this way a common platform can be developed in which 
one basic controller design can be reused for successive products or different sensor 
modalities. This is an example of the SoC methodology, in which the majority of 
the components are connected together on a single chip. Commonplace examples of 
products containing these SoC devices are mobile telephones, digital television and 
radio receivers, and computer game consoles. The design of small SoCs is well 
suited to capsule design since the device requirements are both complex and un-
usual to the extent that a small enough device cannot readily be assembled from off-
the-shelf components. 
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Figure 11.3 A typical block diagram of the key features of a capsule (a), and 
a receiver (b). Because the receiver is not constrained by power and size it 
can have any reasonable level of complexity [21]. 

For capsule devices the use of a digital architecture enables substantially more 
complex systems to be built that are capable of performing many measurements. 
Figure 11.4 shows an integrated circuit designed for use in a microcapsule system 
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that contains all the electronics required. In this implementation, a small low-power 
transmitter has been integrated on to the same chip with a usable operating range of 
only 10–20cm. Because of the difficulty of building a suitable transmitter on to the 
same integrated circuit as the rest of the instrument, it is usual to have a separate RF 
section, usually made from commercially available parts. The majority of devices 
have only a one-way wireless link to enable data transmission to an external device. 
However, a device providing a two-way link has recently been demonstrated [55]. 
The advantages of a two-way wireless link are improved security of the wireless 
connection and external control of the capsule. 

Sensor interface

Clock divider

ADC

RC oscillator

MCU

DS-SS encoder

RF section

Figure 11.4 A photomicrograph of an integrated circuit providing nearly all 
the electronics for a capsule device. (See colour insert.)

Once all the measurements are combined, they are encoded and transmitted over 
a wireless link to a receiver outside the body. There are many possible ways of 
building the external system and for illustration purposes we show a system com-
bining an RF section, a decoder and display or data storage unit. This latter unit, 
usually a wearable device, could simply record data on to storage media for subse-
quent analysis, or provide real-time display and analysis capabilities. Another pos-
sibility that has been investigated is to implement the external unit as a web server 
enabling clinicians to “look in” from potentially any networked device with a web 
browser [8]. 

11.4.3 Integrated Sensors 

There are a wide variety of microsensor technologies now available, many of which 
can be applied to diagnostic capsule applications. A useful text describing many ex-
amples is given by Gardner [56]. Microsensors, and in particular, those sensors that 
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can be integrated into a small format and sharing a common platform with the elec-
tronics, are very useful for size-constrained systems such as a diagnostic capsule. 

11.4.3.1 Physical 

One of the most significant examples has been the use of CMOS video chips by 
Given Imaging Ltd. In addition to the ability to integrate the electronics and the 
sensor on the same chip, the advantages of the CMOS video approach, as opposed 
to using a charge coupled device, are the relatively low cost and the ability of the 
device to operate at relatively low voltage. 

The integration of CMOS image sensors with electronics is a result of the ad-
vance of consumer electronics. Other integrated sensors, targeted at industrial and 
medical applications, have also been developed that are well suited to capsule sys-
tems [17]. With the advent of Micro Electro-Mechanical Systems (MEMS), it is 
now possible to pattern complex 3D structures into CMOS chips. MEMS processes 
can be divided into either bulk or surface micromachining. In bulk micromachining, 
the silicon substrate is etched away from the back of the chip or wafer, using the 
oxide layer as an etch stop [57, 58]. This leaves a thin membrane containing the 
CMOS circuits, which has excellent thermal isolation and can be used for heat-
based sensors. In surface micromachining of CMOS chips, the metal layers, or the 
intermetal dielectric layers, are etched away to leave freestanding structures [59]. 
Resonating beams for mass sensing or thin filaments for heat sensing can be made 
in this way. Several sensors have been fabricated using a combination of CMOS 
and MEMS technologies. For example, a recent capsule-type device for measuring 
intravascular pressure uses a MEMS capacitive pressure sensor integrated onto a 
CMOS chip [60, 61]. 

11.4.3.2 Chemical 

As already discussed, pH sensors can be made using conventional glass electrode 
methods, but the arrival of chip-based sensors has allowed a more integrated ap-
proach to be adopted. Using this method it has been possible to implement more 
than one sensor on a single chip hence increasing functionality whilst contributing 
to the overall aim of reducing the capsule size. Figure 11.5 shows two sensor chips 
that have been developed for a laboratory-in-a-pill device [21]. The chips contain a 
diverse range of sensor technology, not least of which is a microfabricated Ag/AgCl 
reference electrode. 

Chemical sensors have also been realised on CMOS chips. They may be classi-
fied as follows [17]: 

• Chemomechanical sensors typically use a polymer-coated reso-
nating beam whose fundamental frequency is changed by the 
mass of absorbed gas molecules. 

• Catalytic sensors have an electrically heated suspended filament 
that causes local oxidation reactions, and measures the heat loss 
as a change in temperature. 
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Figure 11.5 Two sensor chips developed for a laboratory-in-a-pill. a) Sche-
matic diagram of Chip 1, measuring 4.75×5mm2, comprising a pH based on 
an ISFET sensor (1), a dual electrode conductivity sensor (3) and a silicon 
diode temperature sensor (4); b) schematic diagram of Chip 2, measuring 
5×5mm2, comprising an electrochemical oxygen sensor (2) and a Pt resis-
tance thermometer (5). Once integrated in the pill, the area exposed to the ex-
ternal environment is illustrated by the 3mm diameter circle; c) photomicro-
graph of sensor Chip 1; and d) sensor Chip 2. The bonding pads (6), which 
provide electrical contact to the external electronic control circuit, are shown; 
e) close up of the pH sensor consisting of the integrated 3×10-2mm2

Ag AgCl reference electrode (7), a 500µm diameter and 50µm deep, 10nL, 
electrolyte chamber (8) defined in polyimide, and the 15×600µm floating 
gate (9) of the ISFET sensor; f) an oxygen sensor is likewise embedded in an 
electrolyte chamber (8). The three-electrode electrochemical cell comprises 
the 1×10-1mm2 counter electrode (10), a microelectrode array of 57×10µm
diameter (4.5×10-3mm2) working electrodes (11) defined in 500nm thick 
PECVD Si3N4, and an integrated 1.5×102mm2 Ag AgCl reference electrode 
(12).
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• Thermoelectric sensors use thermocouples to measure heat liber-
ated or consumed by the interaction of a membrane with an ana-
lyte.

• Optical sensors use photodiodes to measure the light output from 
bioluminescent bacteria when they metabolise the target com-
pound. 

• Voltammetric sensors are miniaturised versions of the standard 
three-electrode cell to measure the electron exchange currents that 
occur in redox reactions. 

• Potentiometric sensors use modified field-effect transistors to 
measure the potential due to the concentration of ions in a gas or 
liquid. 

• Conductometric sensors use either resistors or capacitors coated 
with a sensitive material (polymers or metal oxides, for example) 
to measure changes in impedance on exposure to the analyte. 

Most of these CMOS-compatible sensors produce analogue outputs and need to 
be connected to external equipment in order to make measurements. Recently, there 
have been several examples of CMOS chemical sensors that take full advantage of 
the ‘system-on-chip’ paradigm. The gas sensor chip described by Hagleitner [62] 
used a combination of chemically sensitive capacitors, resonant beams and thermo-
couples, as well as a temperature sensor, integrated on a single chip. All the control 
and sensing electronics, an Analogue-to-Digital Converter (ADC) and a digital in-
terface were included on the chip. A commercial CMOS process was used, and both 
bulk and surface micromachining techniques were employed to define the sensing 
structures, after the chip had been fabricated. 

In another example, a fully integrated pH measuring instrument was made using 
a standard CMOS foundry process with no modification by micromachining [24]. 
Figure 11.6 shows a photomicrograph of the instrument with the individual compo-
nents labelled. At the heart of this device is a floating gate Ion-Sensitive Field Effect 
Transistor (ISFET) made by taking advantage of the foundries standard process 
materials and design rules. 

11.4.3.3 Biological 

Another example, this time of a ‘partial SoC’ CMOS chemical sensor, uses living 
cells as the transducer to detect the presence of a toxin [63]. It is not a complete 
SoC as it requires off-chip analogue electronics and a microcontroller to make 
measurements. A microfluidic chamber is clamped in place above the electrodes on 
the chip. Heart muscle cells are injected into the chamber and cultured there. The 
chip allows different electrode pairs to be addressed and the system automatically 
selects those giving the strongest action potential signals from the cells as they beat. 
The system was packaged into a battery-powered handheld unit complete with 
pumps for the microfluidics, allowing it to be used outside the laboratory.  
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Figure 11.6 Photomicrograph of encapsulated SoC pH meter.

Living cells have also been used as bioluminescent ‘bioreporters’ with a CMOS 
SoC, to measure gas concentrations [64]. The cells used were luminescent in the 
presence of toluene. An integrated photodiode produced a current proportional to 
the light intensity, which was converted into a digital output by the on-chip process-
ing circuitry. Depending on the length of integration time used, concentrations as 
low as 10 parts per billion of toluene were detected. 

Clearly biologically based sensors as described above are not of immediate ap-
plication to diagnostic capsule devices, but may have an application in the future as 
technology moves towards highly specific discriminatory techniques. 

11.5 Electronics System Design 

In addition to having all the required components for the implementation of a cap-
sule device one must think about how the complete system will be designed to 
achieve the desired performance. As we have seen there is rapid progress away 
from benchtop instrumentation design to modern integrated circuit implementa-
tions. As a consequence it is appropriate to use silicon design methodologies. Such 
methodologies have emerged from the microelectronics industry as more complex 
designs have been required [65, 66]. We present a methodology here that is rela-
tively simple by the standards of the industry, but encapsulates sufficient detail to 
enable accurate design of a sensor system. 
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11.5.1 Analogue Electronic Front-End Acquisition Design 

The steps involved in designing an analogue circuit are illustrated in Figure 11.7. 
The main difference from digital design is that both the schematic and physical de-
signs are created by hand. An analogue circuit starts off as a high-level model or 
simply a list of requirements that must be met. The first attempt at a circuit design 
is made using a schematic editor to draw a diagram of the components and their 
connections. The standard components available in a CMOS process are MOS-
FETs, resistors and capacitors but others such as diodes, bipolar transistors and in-
ductors can also be created. Parameterised models for all available component 
types, obtained by characterising fabricated devices, are provided by the foundry. 
The circuit is simulated by an analogue circuit simulator such as SPICE. 

Figure 11.7 Flowchart for the computer-aided analogue circuit design process. 

The circuit is unlikely to fulfil its requirements at the first attempt, so either the 
topology of the circuit or the parameters of its components are changed. Depending 
on the complexity of the circuit, several iterations may be required until the simu-
lated response matches the desired response. When this is achieved, work can begin 
on the physical design (layout) of the circuit. A layout editor is used to draw areas 
of n-type and p-type silicon, polysilicon and metal that will form the components 
and connections. The task is usually made easier by the foundry that provides pa-
rameterised cell macros that generate the layout data for MOSFETs, resistors and 
capacitors. However, for low-noise, well-matched, or compact circuits it is often 
necessary to create these devices by hand. The arrangement of devices and the con-
nections between them is also carried out by hand. Once complete, Design Rule 
Checking (DRC), Electrical Rule Checking (ERC) and Layout Versus Schematic
(LVS) checks are performed to ensure that the final design is as intended. The de-
sign can be modified as required until a satisfactory conclusion is reached. 

11.5.2 Digital System Design 

A flow diagram of the steps involved in designing a digital circuit is shown in Fig-
ure 11.8. In contrast to the analogue design flow, the physical design can be gener-
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ated using software. The digital circuit may start off as a high-level “behavioural” 
model written in a programming language such as C or Matlab. It is then re-coded 
into a Hardware Description Language (HDL) that allows the designer to describe 
digital circuits. The code is then compiled, simulated and debugged. Once the errors 
have been removed, simulation is required to ensure that the HDL code performs 
the functions described by the original high-level model. 

Figure 11.8 Flowchart for the computer-aided digital circuit design process.

If the HDL code uses only certain constructs that are allowed at a Register 
Transfer Level (RTL) (see [67] for a description of RTL), then the code may be 
synthesised. The synthesis process automatically generates the details of the gates 
and their interconnections to form a structural netlist. It attempts to optimise the 
netlist based on timing, area and power constraints that are set by the designer, and 
on the information contained in the library models provided by the foundry. 

After synthesis, the netlist is converted into a physical layout by the automatic 
“place and route” tool. Delay information is extracted from this tool and used to an-
notate the structural netlist. If the simulation of this timing-accurate netlist fails to 
meet the specifications, then another iteration of the design loop is required. The 
next step in the process is to export the design, using the GDSII file format (GDSII 
is the standard file format for transferring/archiving 2D graphical design data) to 
describe the layout. The GDSII data and the HDL structural netlist are then im-
ported into the layout editor (as used for the analogue design) to create the layout 
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and schematic views respectively. As a final check, DRC, ERC and LVS checks are 
performed as for the analogue design process. 

11.6 The Wireless Environment 

The transmission of radio signals in and around the human body is of considerable 
importance to the success of a wireless capsule device. The behaviour of an elec-
tromagnetic field in the presence of a human body is influenced by the dielectric 
properties of human tissue. In addition, the dielectric function is frequency-
dependent and the absorption of electromagnetic waves increases with increasing 
frequency. As a consequence reflection at boundaries, scattering, absorption and re-
fraction of electromagnetic fields are frequency dependent. However, the radiation 
from electrically small sources in free space increases with frequency. In addition, 
the effect of the capacitive loading of the surrounding tissue on the source has a 
complicated frequency and spatial dependence. 

Unsurprisingly, given the prevalence of mobile telephony, the majority of work 
that has been done to obtain a detailed understanding of radio transmission near the 
human body has focussed on the head and neck. Early work used relatively simple 
body models that assumed that human tissue was homogenous [68]. As work pro-
gressed research moved to more sophisticated models [69]. More recently there 
have been a number of studies looking at the abdominal region using detailed mod-
els for both female [70] and male bodies [19]. The main results of these latter simu-
lations are shown in Figure 11.9. The simulations were carried out for an ingested 
transmitter at a number of possible locations and orientations and the data shown is 
therefore only representative. 

Despite the fact that absorption of electromagnetic radiation increases with fre-
quency it is found that, up to a point, increasing the frequency can improve the far-
field signal strength from an ingested source (Figure 11.9(a)). The reason for this is 
that the size of the capsule device demands that an electrically small antenna be 
used, and that typically the antenna be very much smaller than λ/2 (the preferred 
size for the simplest radiating device), where λ is the wavelength. As a conse-
quence, when the frequency is increased, the wavelength decreases towards the an-
tenna dimensions, increasing the antenna’s efficiency. It has been found that there is 
a competing effect between the increased efficiency of the antenna and the increas-
ing absorption of the body tissue, and ultimately there is a trade-off in which an op-
timum frequency is found. Simulations have shown this to be in the region of 
650MHz which does not correspond exactly with any of the available ISM bands 
around the world. Since it is comfortably between European and USA frequencies, 
most major markets can be supplied. 

The near-field pattern data is of interest since in many applications it is antici-
pated that the receiver antennae will be in close proximity to the body, which is for 
the most part located in the near-field for the wavelengths concerned. From Figure 
11.9(b) it can be seen that there is greater field strength to the left-hand anterior po-
sition of the abdomen due to the strongly absorbent nature of the liver on the right-
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(a)

(b)

Figure 11.9 (a) Far-field radiation patterns from an ingested source at 
150MHz (left) and 434MHz (right). The solid line is for E-field polarisation 
horizontal to the body, and the dashed line is for the vertical polarisation.  
(b) The near-field pattern showing the field strength around the body. (See
colour insert.)
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hand side. The results of simulations of this kind can be used directly to assist in the 
design of the antenna system. 

An alternative to conventional propagating wireless systems is to communicate 
wirelessly using the inductive near-field  [71]. Without dealing in detail with the 
electromagnetic problem here, it is possible to transmit wirelessly at low frequen-
cies over distances that are very small compared to the propagating wavelength. In 
this evanescent regime designers can take advantage of the lower absorption of RF 
power at lower frequencies and replace the antenna with two coils (one internally 
and one externally) that effectively behave as the primary and secondary coils of a 
transformer respectively. Detailed design and experimentation have shown that 
such a system can communicate effectively over the required range consuming less 
electrical power than a more conventional radio system [21]. 

11.7 Power Sources 

Powering capsule devices is perhaps one of the greatest challenges. There are many 
possible micropower sources currently being researched, a review of which has 
been written by Roundy [72]. Not all the available techniques, for example solar 
power, are useful in the context of an ingested device. More practical techniques in-
clude: a battery; electromagnetic induction; and electromechanical conversion. 
Other schemes, such as making direct use of gut mucosa as an electrolyte in an 
electrochemical cell arrangement, have been proposed but have not been explored 
in any serious way. 

Although the use of batteries is by far the simplest power source it comes with 
certain restrictions. Not all types of cell are favourable to use in implants (e.g.
ZnO2), and achieving adequate power density from the safer choices available is 
difficult (e.g. AgO). However a potentially greater problem than integrated energy 
storage is peak current delivery, since even short periods of high demand, for ex-
ample during signal transmission, can very rapidly deplete a battery. As a conse-
quence, when designing a microtelemetry system it is important to complete a de-
tailed power budget and make design decisions that will ultimately compromise the 
devices performance in order to ensure correct functionality during a complete gut 
transit. 

Electromagnetic induction is an attractive option as it not only reduces the 
power constraint on the device but also removes the need for batteries would make 
the device smaller. The maximum power density permitted near the human body is 
in the region of 1 mW/cm2 but varies from country to country [73]. This is a severe 
limitation given the power requirement and distance over which power must be 
transmitted to reach a device deeply embedded in the human abdomen. With the 
exception of the relatively simple RFID temperature sensing devices developed for 
animal use that we have already discussed there has not yet been any significant 
demonstration of this technology for the more sophisticated human medical de-
vices.
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11.8 Packaging 

Having decided upon the internal apparatus of a laboratory-in-a-pill it must all be 
packaged into a capsule. The package must be mechanically strong, chemically in-
ert and allow access between the sensors and their environment. For optical devices 
there is always the prospect of an obstruction blocking the lens, but the clear plastic 
dome structures that are used in current products, such as the M2A from Given Im-
aging, are relatively easy to manufacture and strong. It is significantly more com-
plicated to construct packages that will permit fluid access onto to sensor devices, 
especially if these devices are integrated circuits or chips that will be adversely ef-
fected by current leakage due to liquids seeping into the encapsulating materials. 

One of the main obstacles that has prevented the commercialisation of ISFET-
based devices is the repeatability and reliability of the encapsulation procedure. It is 
normal for the encapsulant to be applied by hand, covering the chip and bond-wires 
but leaving a small opening above the sensing area. Epoxy is the most extensively 
used material although it is important to select a composition that is stable, a good 
electrical insulator and does not flow during encapsulation. Many commercially 
available epoxies have been assessed for their suitability by making measurements 
of their electrical impedance over time [74-77]. 

By using UV-curable polymers, it is possible to increase the automation of the 
packaging process using a standard mask aligner. A lift-off technique was devel-
oped using a sacrificial layer of photosensitive polyimide to protect the ISFET 
gates. Alumina-filled epoxy was applied by screen printing and partially cured, be-
fore the polyimide was etched away leaving a well in the epoxy [78]. After ten days 
in solution, leakage currents as high as 200nA were observed. Better results were 
achieved by direct photo-polymerisation of an epoxy-based encapsulant. ISFETs 
packaged using this method showed leakage currents of 35nA after three months in 
solution. To avoid polarising the reference electrode, common to such devices, a 
leakage current of less than 1nA is desirable [79]. This photolithographic patterning 
of the encapsulant was done at the wafer-level, to all the devices simultaneously. 
Subsequently the wafer was diced up and the individual chips were wire-bonded 
and coated with more encapsulant by hand. 

At the chip-level, wire-bonded ISFET chips have been covered (again by hand) 
with a 0.5–1mm thick photosensitive, epoxy-based film, then exposed and devel-
oped [80]. After twenty days in solution, the devices retained low leakage currents. 
Some degree of automation was introduced by Sibbald [75] who used a dip-coating 
method to apply the polymers. The chip was mounted in a recess in a PCB and the 
wire-bond connections were made, before coating it with a layer of polyimide. Two 
layers of photoresist followed, before the underlying polyimide was etched away 
(Figure 11.10). The slight undercutting of the polyimide was reported to be useful 
in anchoring the CHEMFET membrane in place. The packaged devices showed less 
than 10pA leakage current after ten days in solution. However the encapsulation did 
exhibit electrical breakdown for applied bias voltages in excess of 1.5–2V. This was 
attributed to the high electric field in the thin layer of resist covering the bond-
wires. More recently a single layer of an epoxy-based photoresist (SU-8) has been 
used to package a pH-sensing microchip [81]. In a separate study, photosensitive 
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polyimide has also been used to create the wells that separate the ion-selective 
membranes on a multiple ISFET chip [82]. 
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Figure 11.10 Diagram of the cross-section through a CHEMFET device in a 
recessed PCB, encapsulated using a layer of polyimide and two layers of 
photoresist [75].

It is interesting to note that although flip-chip bonding is a well established and 
robust packaging technique, it has not been applied to liquid-sensing ISFETs. In 
flip-chip bonding, solder bumps are patterned onto the bond-pads, allowing the chip 
to be directly connected to a PCB without the need for bond-wires. A gas sensor has 
been fabricated in this way, by bonding an ISFET to a ceramic substrate that had 
been coated with a suitable polymer [83]. It may be that the high cost of solder 
bumping, which is normally applied to a whole wafer of devices, has prevented 
wider use of flip-chip bonding in capsule packaging. 

11.9 Conclusions 

The development of microsystems for use in and around the body first came to the 
fore before the term microsystem had even been invented. It began with the inven-
tion of the transistor, and the end is not yet in sight. However the drivers have not 
significantly changed: the availability of cheap technology from more mainstream 
research and development has enabled sensor system designers to become more 
ambitious and hope to deliver tremendous technologies for many applications, es-
pecially in healthcare. In this chapter, we have reviewed the broad range of mi-
crosensor systems that have been explored. Some of the most exciting applications 
are in human medicine, and devices for use in the human gastrointestinal tract have 
received particular attention in recent years. In addition to reviewing these tech-
nologies we have provided a description of many of the design challenges that must 
be overcome to meet the demand requirements of these applications. 
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and Future Outlook 

Guang-Zhong Yang 

With demographic changes associated with the aging population and the increasing 
number of people living alone, the social and economic structure of our society is 
changing rapidly. Older adults of 65 and above already constitute one-fifth of the 
total population, and it is expected this will continue to grow to over 750 million by 
2025. In almost all countries, longevity has given rise to expensive age-related dis-
abilities and diseases. With the steady decline of the ratio of workers to retirees, a 
fundamental change to the way that we care for the aging population is inevitable. 
In the UK, for example, there are around 400,000 places in residential care homes 
and another 180,000 beds in nursing care homes. On top of this, more than 400,000 
households receive home care, of which 30% require more than ten hours and/or six 
visits per week. The cost of such long-term care was around £11.1 billion in 1995 
and it is projected to rise by 30% by 2010, and a further 35% by 2021, driven by the 
20% increase in demand for residential care over the next twenty years and the shift 
towards more intensive support.  

In a population consisting of several vulnerable groups, such as those with 
chronic disease and the elderly, the need for effective individualised health monitor-
ing and delivery is the primary motivation for the development of Body Sensor 
Networks (BSNs). The concept of the BSN is an important ingredient for the future 
development of pervasive healthcare because technological developments in sens-
ing and monitoring devices will not only change chronic disease management in a 
home or community setting, but also reshape the general practice of clinical medi-
cine.

Although extensive measurement of biomechanical and biochemical informa-
tion is available in almost all hospitals, this diagnostic and monitoring utility is gen-
erally limited to brief time intervals and perhaps unrepresentative physiological 
states such as being supine and sedated, or via artificially introduced exercise tests. 
Transient abnormalities, in this case, cannot always be captured. For example, 
many cardiac diseases are associated with episodic rather than continuous abnor-
malities such as transient surges in blood pressure, paroxysmal arrhythmias or in-
duced or spontaneous episodes of myocardial ischaemia. These abnormalities are 
important but their timing cannot be predicted and much time and effort is wasted 
in trying to capture an “episode” with controlled monitoring. Important and even 
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life threatening disorders can go undetected because they occur only infrequently 
and may never be recorded objectively.  

High risk patients, such as those with end-stage ischaemic heart disease or end-
stage myocardial failure, often develop life threatening episodes of myocardial is-
chaemia or ventricular arrhythmia. These episodes, if reliably detected, would lead 
to better targeting of potentially life-saving but expensive therapies. With the emer-
gence of miniaturised mechanical, electrical, biochemical and genetic sensors, there 
is likely to be a rapid expansion of biosensor applications over the next decade with 
a corresponding significant reduction in size and cost. This will facilitate continu-
ous wireless monitoring, initially of at-risk patients but eventually screening an in-
creasing proportion of the population for abnormal conditions. 

The ultimate aim of the BSN is to provide a truly personalised monitoring plat-
form that is pervasive, intelligent, context-aware, and invisible to the patient, 
thereby avoiding activity restriction or behaviour modification. It is expected that 
the concept of BSNs will attract a range of applications, from monitoring of patients 
with chronic disease and care for the elderly, to general well-being monitoring and 
performance evaluation in sports. To promote its widespread use, there are a num-
ber of technical challenges that need to be tackled. These include the need for better 
sensor design, MEMS integration, biocompatibility, power source miniaturisation, 
low power wireless transmission, context awareness, secure data transfer, and inte-
gration with therapeutic systems.  

In the last two decades, we have seen rapid advances in both chemical and bio-
sensor development which have resulted in an improved understanding of micro-
electrode and ultramicroelectrode behaviour at micrometre and submicrometre spa-
tial resolutions, as well as gaining us further insight into the electrode reaction 
mechanism and kinetics. They have permitted new techniques in protein engineer-
ing and molecular biology that allow the production of new mutant enzymes with 
improved stability, higher activity and controlled protein immobilisation. The 
emergence of new biological sensing elements such as catalytic antibodies and ap-
tamers represents a new paradigm in biosensor design that has offered unprece-
dented selectivity. For the practical deployment of BSNs, recent developments in 
microfluidics, especially in microneedle array technology, hold out great potential 
for wearable, minimally invasive sampling of extracellular fluid. These develop-
ments are likely to fundamentally alter the way we apply biomeasurements in fu-
ture.  

In terms of implantable sensing, many of the issues associated with the exten-
sion of biosensor technology from in vitro to in vivo applications have long been 
appreciated, and a number of practical solutions are starting to emerge. Whether the 
vision of a long-term implantable sensor will ever be realised will depend on ad-
vances across a range of disciplines, many of which are discussed in this book. 
These include the development of perpetual powering of BSN devices through ef-
fective energy scavenging. Body-powered applications, however, remain a great 
challenge because of the low specific power levels at low frequencies, therefore 
substantial progress will be required in reducing power requirements before such 
solutions become feasible, particularly for wireless data transmission. As discussed, 
the need for integrated power conditioning circuits with energy scavenging also en-
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courages a trend towards intelligent energy modules, possible incorporating several 
forms of scavenging as well as storage, power conditioning, and power manage-
ment electronics.  

The search for an effective power source for powering the BSN node is inti-
mately related to the future hardware design of the BSN. In a BSN with limited 
bandwidth and power constraints, the conventional method of data acquisition and 
analogue-to-digital data conversion with signal processing taking place after trans-
mission is no longer optimal. BSNs are a prime candidate for bio-inspired local 
processing to take place at the sensor front-end before transmission. This processing 
could include spatial and temporal averaging for drift and failure tolerance. The key 
principle of bio-inspired engineering in this application area is that biology does not 
often deal in absolute values, but in relative changes from a given norm. 

From a sensor data processing and inferencing point of view, the development 
of the BSN has introduced a whole range of challenging research issues in pattern 
recognition and machine learning. The pursuit of low power, miniaturised, distrib-
uted sensing whilst the patient is under natural physiological conditions has also 
imposed significant challenges on integrating information from what is often het-
erogeneous, incomplete, and error-prone sensor data. In practice, it is therefore de-
sirable to rely on sensors with redundant or complementary data to maximise the in-
formation content and reduce both systematic and random errors.  

One important aspect of the book is the introduction of bio-inspired concepts 
both for hardware design and for developing software components that possess the 
self-* properties of autonomic sensing. We have discussed the use of artificial neu-
ral networks for performing context-aware sensing, and the use of autonomic prin-
ciples of self-healing, self-organisation, and self-protection for developing BSNs 
with effective fault tolerance and self-protection. Due to the inherent complexities 
involved in managing a large number of wireless sensors, bio-inspired sensing and 
networking is an important area of study for future BSN research.   

In academic research and development, it is difficult to find a field that is great-
ly diversified, and yet still brings many challenges and innovations to each of the 
disciplines involved. The development of BSNs, however, is a striking exception. 
As we have stated previously, there is little doubt that for the development of the 
BSN, a panoply of technologies will need to be combined in new and previously 
unsuspected ways. However, the rewards for success, in terms of the quality and 
duration of life in the case of many of those suffering from chronic conditions, will 
be substantial.  
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Wireless Sensor

Development Platforms 

Benny Lo and Guang-Zhong Yang 

A.1 Introduction 

The development of BSN has greatly benefited from the rapid advances in Wireless
Sensor Networks (WSNs) in recent years. Since the introduction of the concept of 
WSN and ubiquitous computing, a large number of development platforms have 
been introduced [1, 2]. During 2004 and 2005, for example, more than twenty dif-
ferent WSN hardware platforms have been proposed. Figure A.1 demonstrates this 
trend since 1998 with some of the WSN hardware platforms illustrated. A more de-
tailed list of some of the major WSN platforms is provided in Table A.2Error! 
Reference source not found.. It must be pointed out, however, that this table is by 
no means exhaustive and unintentional omission is likely. As stated in Chapter 1, 
the general design and requirements for BSNs can be different from typical WSN 
applications. However, many of the WSN development platforms can be modified 
to cater for general BSN applications. Thus far, most research in BSN is based on 
general WSN platforms, particularly for wireless communication, data fusion and 
inferencing. This appendix outlines the system architecture of common WSN plat-
forms and provides an overview of some of the main hardware components in-
volved.  

A.2 System Architecture 

The system architectures of all WSN development platforms are relatively similar, 
and they mainly consist of six major components as depicted in Figure A.2: 

• Processor – The brain of the sensor node  
• Wireless Communication – wireless link between sensor nodes 
• Memory – External storage for sensor readings or program images 
• Sensor Interface – Interface with sensors and other devices 
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• Power Supply – Power source of the sensor node 
• Operating System – Software for managing the network and re-

sources  

Figure A.1 Examples of WSN hardware platforms developed in recent years.  
(See colour insert.)

Figure A.2 The main components of common WSN nodes. 

A.2.1 Processor 

Most WSN platforms are based on COTS (Commercial Off-The-Shelf) components, 
and the development of WSN depends extensively on the rapid advancement of mi-
croprocessors. For instance, the Mica2 node has about eight times the memory ca-
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pacity and communication bandwidth as its predecessor, the Rene node developed 
in 1999, whilst maintaining the same power consumption and cost [3]. Unlike 
common Personal Computing (PC) applications, WSN requires much less process-
ing power due to tight constraints on size and power consumption. For this reason, 
WSN platforms are mainly based on low power Microcontroller Units (MCUs) 
rather than using conventional PC-type processors. Depending on the amount of 
processing required, a number of WSN platforms are based on mobile computing 
MCUs, which are designed for Personal Digital Assistants (PDAs). Recently, sig-
nificant effort has also been invested by a number of manufacturers in developing 
processors with integrated radio transceivers.  

A.2.1.1 Low Power MCU 

For many WSNs, node size and power consumption are often considered more im-
portant than the actual processing capacity because in most applications the amount 
of processing involved is relatively light. Among currently available MCUs, Atmel 
ATmega 128L and Texas Instruments (TI) MSP430 are the most popular processors 
used in WSN platforms due to their integrated low power design, multiple sensor 
interfaces, and widely available developing tools.  

The Atmel ATmega 128L processor is an 8-bit microcontroller designed for 
embedded applications. With a 16MHz clock, the ATmega processor can deliver up 
to 16MIPS (Million Instructions Per Second) processing power [4]. Equipped with 
a relatively large programmable flash memory (128KB), 8-channels of 10-bit ADCs 
(Analogue-to-Digital Converters) and low operating voltage (2.7V), the ATmega 
processor has been widely used in many WSN platforms. They include the Mica 
motes [5], BTnode [6], Nymph [7], AquisGrain, DSYS25 [8], Ember [9] and Fleck 
[10]. Figure A.3 illustrates the Atmel processor used for the Mica2 mote. 

Figure A.3 Atmel processor on a Mica2 mote. 

The TI MSP430 processor is an ultra low power 16-bit RISC (Reduced Instruc-
tion Set Computer) processor [11]. Compared to the Atmel processor, which con-
sumes 8mW in active mode and 75µW in sleep mode, the MSP430 requires much 
less power in both active (3mW) and sleep modes (15µW). It also has a much lower 
operating voltage of 1.8V [12]. With its wide range of interconnection functions, 
12-bit ADCs and the serial programming interface, the MSP430 has been widely 
adopted in platforms such as Telos [5], Tmote sky [13], eyesIFXv2 [14], Ant [15], 
Pluto [16] and BSN node [17]. Figure A.4 illustrates the MSP430 processor used on 
the Telos node. 
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Figure A.4 MSP430 processor used on a Telos node. 

A.2.1.2 Mobile Computing MCUs 

For certain WSN applications, such as those for video based monitoring, relatively 
high processing power is required and typical MCUs will not be able to process the 
acquired sensor data in real-time [18]. To balance power consumption and process-
ing performance, a few of the WSN platforms have used ARM processors designed 
for handheld devices such as the PDAs. For example, two of the early WSN plat-
forms, AWAIRS 1 [19] and µAMPS [20], both used the Intel StrongARM SA-100 
processor. This is a 32-bit RISC processor with operating frequency up to 206Mhz.  
The newly announced Sun Spot system also uses a 32-bit ARM processor, which is 
a new processor with lower power consumption and smaller size [62].  The recently 
proposed iMote2 [21] uses the new Intel PXA 271 processor operated at a fre-
quency up to 416MHz. With its adjustable operating frequency function, the PXA 
processor can be configured for low power application as well as computationally 
demanding tasks. In addition, the PXA processor provides a wide range of connec-
tivity including SD (Secured Digital), which allows iMote2 to use SD as an ex-
tended memory storage or existing SD-based wireless connections such as Blue-
tooth and Wireless LAN. 

A.2.1.3 Integrated Processor with Radio Transceiver 

Recently, System-on-Chip (SoC) Processors or integrated processors with radio 
transceivers are becoming popular due to their miniaturised size and simplicity in 
board design. One exemplar is the Berkeley Spec, which is a custom-made proces-
sor with an 8-bit RISC processor combined with a FSK (Frequency-Shift Keying)
transceiver [3]. By integrating the radio transceiver, the size of the Spec is only 
5mm2. Since then, several commercial integrated MCUs have been introduced, and 
WSN platforms such as iMote1 [22], MITes [23], RFRAIN [24], RISE [25] and 
uPart0140ilmt [26] are designed with this type of MCU to facilitate size reduction. 
In addition to the radio transceiver, recent research has taken a further step to 
miniaturise the WSN node by integrating sensors and power supply onto the MCUs. 
One example of this is the SAND (Small Autonomous Network Devices) platform 
proposed by Philips research, which is a multiple stacked die SoC.  It consists of 
sensors, signal processing, data storage, power management, low bit-rate wireless 
communication and a power source [27]. Similar 3D stacked sensor system has 
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been proposed in IMEC’s Human++ project and Match-X’s VDMA system [28, 
29]. 

A.2.2 Wireless Communication  

Amongst all of the elements required, wireless communication is the most power-
demanding component of WSNs. This often accounts for more than half the overall 
power consumption of a sensor node [30]. Parallel to the development of micro-
power radio transceivers, such as the Pico radio [31], existing research in WSNs has 
been focused on developing energy-efficient protocols and routing strategies. The 
three main components of wireless communication are the radio transceiver, an-
tenna, and communication protocols. 

A.2.2.1 Radio Transceiver 

Most of the early WSN platforms, such as WeC [32], Rene [33], Dot [5], SpotOn 
[34, 35] and CENS Medusa MK-2 [36], used RFM TR1000 as the radio transceiver 
due to its low power, small size, and hybrid design. Subsequent platforms, such as 
Mica2 [5] and Mica2Dot [5], are based on the Chipcon CC1000 chipset because it 
provides a more reliable FSK modulation, selectable modulating frequency, and 
low power architecture. Figure A.5 shows a Mica2Dot with a CC1000 transceiver. 
Other platforms, such as BTnode, iBadge [37] and iMote1, are based on Bluetooth 
radio transceivers in order to achieve high bandwidth data communication and ease 
of integration with other Bluetooth based mobile devices.  

Figure A.5 Chipcon CC1000 on a Mica2Dot. 

Since the introduction of the IEEE 802.15.4 standard for WSNs, most of the 
new platforms are using the Chipcon CC2420 wireless transceiver, which is one of 
the first IEEE 802.15.4 compatible chipsets. Although the power consumption of 
the CC2420 (19.7mA) is higher than the CC1000 (7.4mA), the CC2420 can deliver 
250kbps, which is 6.5 times higher than its predecessor (38.4kpbs) [38, 39]. In ad-
dition, it also incorporates an AES-128 (Advanced Encryption Standard) hardware 
encryption engine and the IEEE 802.15.4 MAC (Medium Access Control) function, 
which enables it to act as a co-processor to handle all packet communications. 
Compared to the CC1000 and RFM TR1000, where the MCU has to handle all of 
the MAC layer communications, the CC2420 significantly reduces the computa-
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tional demands on the MCU, thus leading to significant overall performance im-
provement on the sensor node. As such, most of the recent WSN platforms devel-
oped are based on the CC2420, such as Telos, Tmote sky, MicaZ, Pluto, iMote2, 
Sun Spot, and BSN node. Figure A.6 highlights the CC2420 on a Telos node. 

Figure A.6 Chipcon CC2420 mounted on a Telos node. 

A.2.2.2 Antenna 

To achieve a balance between flexibility, miniaturisation and performance, four dif-
ferent types of antenna have been adopted in current WSN platforms. 

PCB Antenna 

To minimise the manufacturing cost and facilitate the modular design of sensor 
nodes, PCB (Printed Circuit Board) antennas have been widely used in embedded 
systems such as RFID (Radio Frequency Identification) applications. Telos and 
Tmote sky are designed with PCB antennas printed on the circuit board. Figure A.7 
illustrates a prototype BSN node with a PCB antenna. Although printing the an-
tenna onto the circuit board could reduce the manufacturing cost, the performance 
of PCB antenna is relatively poor due to the dielectric loss caused by poor circuit 
board material, and noise induced by coupling with other lossy components and cir-
cuit board traces [40]. For this reason, additional mounting points for external an-
tennas are usually provided on these designs.

Figure A.7 A BSN node with PCB antenna. 
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Wire Antenna  

An alternative to minimising the cost without losing the performance is to use a 
simple wire antenna. Wire antenna is often in loop, monopole or dipole forms. 
Since the wire antenna is located above the circuit board, it performs far better than 
the PCB antenna [40]. For BSN research, a wire antenna is preferred due to its sim-
plicity and flexibility. Mica2, Mica2Dot and BSN nodes are all designed with wire 
antennas. Figure A.8 shows a BSN node with a /2-dipole antenna. However, as 
wire antennas require manual soldering, mass production in large quantities can be 
problematic.  

Figure A.8 A BSN node with a dipole antenna.

Ceramic Antenna 

To simplify manufacturing complexity and facilitate size reduction whilst maintain-
ing the quality of wireless communication, ceramic antennas are often used in WSN 
platforms. Ceramic antennas are usually optimised for certain frequencies and they 
are much smaller in size than wire and PCB antennas. For example, ProSpeckz [41] 
and Ant are integrated with ceramic antennas designed for Bluetooth (or 2.4GHz) 
devices. Figure A.9 shows a BSN node with an alternative ceramic antenna con-
figuration.  

Figure A.9 A BSN node with a ceramic antenna. 
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External Antenna 

To enhance the coverage of the sensor node, external antennas are also used in 
WSN platforms. As external antennas are often isolated from noise induced by the 
circuit board, a significantly higher performance can be achieved in practice [40]. 
Due to the size of the external antenna and its associated mounting, they are not 
practical for wearable applications. Figure A.10 demonstrates a prototype BSN 
node with an external antenna, illustrating the comparative size of the antenna and 
the BSN node itself.

Figure A.10 A prototype BSN node with an external antenna. 

A.2.2.3 Communication Protocol 

Depending on the hardware and the operating systems used, early WSN platforms 
are often developed with proprietary communication protocols. The introduction of 
the IEEE 802.15.4 standard enables the standardisation of communication between 
WSN platforms. Since then, most recent WSN platforms have adopted this standard 
as the basis for their wireless communication protocol, examples of which include 
Telos, Ember[9], MicaZ, Pluto, iMote2, Tmote sky, XYZ node[42], ProSpeckz, and 
BSN node.  

Due to the broad range of WSN applications, the 802.15.4 standard defines only 
the two lower layers, i.e., the MAC and physical layers of the communication pro-
tocol. This enables the design of application-specific protocols. For example, Zig-
bee is built to the 802.15.4 standard and is designed to ease the inter-operation be-
tween different devices. Zigbee specifies all the protocol layers required for 
forming a wireless network and it also provides an interface for application devel-
opment. Although none of the existing platforms has fully adopted the Zigbee 
specification as yet due to its recent introduction, there has been strong interest in 
pursuing this both from the industrial and research communities. Further details on 
802.15.4 and Zigbee can be found in Chapter 5.  
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A.2.3 Memory  

Since limited Random Access Memory (RAM) is provided by MCUs, most WSN 
platforms are designed with an external flash memory or Electrically Erasable Pro-
grammable Read-Only Memory (EEPROM). Due to the non-volatile nature of the 
EEPROM, it is used in most embedded systems for storing configuration informa-
tion because it does not require power to retain the stored data. It is also used as an 
immediate storage for sensor readings. For instance, in order to perform feature ex-
traction or filtering of the sampled data, the EEPROM can be used as a processing 
buffer for these algorithms. Another use of the EEPROM is for storing program im-
ages. For example, Deluge, a TinyOS network-programming tool, uses the external 
flash memory to store the program image in order to enable dynamic reprogram-
ming of the sensor nodes.  

A.2.4 Sensor Interface 

To enable practical application development, most WSN platforms offer analogue 
and digital sensor interfaces.  

A.2.4.1 Analogue Interface 

Sensors such as simple photo resistors and thermistors, or more complex gyroscope 
and condenser microphones, generally provide analogue readings. Most WSN plat-
forms are equipped with ADC interfaces for data sampling and acquisition. For in-
stance, the Atmel Atmega128L MCU has an eight-channel 10-bit ADC that can 
sample at a rate up to 15.4ksps (kilo-samples per second), whereas the TI MSP430 
microcontroller has a 12-bit ADC which provides a higher precision reading than 
that of the Atmel processor. In addition to ADCs, some platforms are equipped with 
Digital-to-Analogue Converter (DAC) for controlling sensors or actuators. 

A.2.4.2 Digital Interface 

Since analogue readings are prone to voltage drift caused by the depletion of the 
battery power, sensors such as the 2-axis accelerometer ADXL202 [43] provide di-
rect digital readings to maintain their precision. As sensor data is relatively small in 
size, serial communication is mainly used for interfacing with digital sensors, and 
the three most commonly used serial communication protocols are I2C, SPI and 
UART.  

Inter-Integrated Circuit Bus (I2C)

I2C is a patented interface protocol developed by Philips Semiconductors [44]. It is 
a half-duplex, synchronous, master-bus requiring only two signal wires for data 
(SDA) and clock (SCL), respectively [45]. With its master-slave design, I2C allows 
a master device to communicate with multiple slaves by using a 7-bit or 10-bit ad-
dress. Figure A.11 shows the basic configuration of an I2C based master-slave sys-
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tem and Figure A.12 illustrates how the data is being transferred on the I2C bus. As 
can be seen from the timing diagram, the data is transferred with the Most Signifi-
cant Bit (MSB) first, with a transfer sequence of address followed by data. The 
communication is controlled by the master, and the start and stop bit are sent by the 
master to initiate and terminate the data transmission. With the start and stop delim-
iters, the I2C bus allows more than one byte of data to be transmitted after sending 
the address byte. Due to its simplicity and high-speed serial protocol, the I2C bus is 
widely used for interfacing between MCUs and other chipsets. For example, the 
humidity sensor SHT11 provided by Telos uses the I2C protocol as the communica-
tion interface [46].  

Slave device 2 

Slave device  1 

Slave device 0 

Master

SCL
SDA

SCL
SDA

SCL
SDA

SCL
SDA

Slave device 2 

Slave device  1 

Slave device 0 

Master

SCL
SDA

SCL
SDA

SCL
SDA

SCL
SDA

Figure A.11 Interface diagram of I2C.

Figure A.12 The timing diagram of I2C.

Serial Peripheral Interface (SPI) 

SPI is a synchronous serial bus developed by Motorola. Similar to the I2C bus, SPI 
is based on a multiple master/slave protocol. However, instead of using addresses to 
identify different devices, the master uses the chip select (CS) wire to establish the 
communication with a specific slave. In addition, SPI enables full duplex commu-
nication up to 1Mbps with its three-wire interface, MOSI (Master Out, Slave In),
MISO (Master In, Slave Out), and the Serial Clock (SCLK). Figure A.13 shows a 
sample connection diagram of a SPI-based system where the master device (usually 
a microcontroller) uses the CS signals to activate specific slave devices and the 
MOSI, MISO and SCLK signals for data transmission. Figure A.14 is the timing 
diagram of the SPI interface of a slave device and demonstrates how the commands 
and data are being transferred between the master and slave devices. As indicated in 
the timing diagram, data is shifted with the MSB first, and each bit is shifted out 



A. Wireless Sensor Development Platforms                                                                      413

(MISO) and sampled (MOSI) on the falling and rising edge of the SCLK signal re-
spectively. Due to its high-speed full-duplex protocol, SPI is often used as the inter-
face protocol between MCUs and radio transceivers. Although most sensors do not 
require full-duplex communications, for platforms that do not have built-in ADCs, 
an external ADC is required to interface with an analogue sensor. Most ADC chip-
sets, such as the AD7816 10-bit ADC [47], offer the SPI interface.

Slave device 2 

Slave device 1 

Slave device 0 

Master

CS0
CS1
CS2

SI
SO
SCLK
CS

SI
SO
SCLK
CS

SI
SO
SCLK
CS

(data out) MOSI
(data in) MISO

SCLK

Slave device 2 

Slave device 1 

Slave device 0 

Master

CS0
CS1
CS2

SI
SO
SCLK
CS

SI
SO
SCLK
CS

SI
SO
SCLK
CS

(data out) MOSI
(data in) MISO

SCLK

Figure A.13 SPI interface diagram. 

Figure A.14 SPI timing diagram. 

Universal Asynchronous Receiver/Transmitter (UART) 

UART, often known as the TTL (Transistor-Transistor Logic) version of the 
RS232[48], used to be the most commonly used interface between computers and 
peripherals before the introduction of Universal Serial Bus (USB). For embedded 
systems, however, it still remains the main communication mechanism. Unlike I2C
and SPI, UART is a peer-to-peer full-duplex network protocol, as shown in Figure 
A.15. Since UART is designed for asynchronous transmission, no clock signal is 
used and devices are expected to operate at the same frequency (i.e. baud rate). Fig-
ure A.16 illustrates the format of the UART protocol where start and stop bits are 
used to signal the beginning and end of the transmission. The data is shifted with 
the LSB (Least Significant Bit) first. UART is often used for device level commu-
nications and it allows long distance connections. For sensing applications, UART 
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has been used for more advanced sensors such as SpO2 sensors and vision-based 
sensors [18].

Device 1 RxD
TxD

Device 1 TxD
RxD

Figure A.15 UART interface. 

Figure A.16 UART data communication. 

Table A.1 summarises the main features of the three protocols mentioned above. 
Most of the WSN platforms provide interfaces for all three protocols. 

Table A.1 Serial interface protocol comparison. 

Protocol Bandwidth Type Duplex Sync/Async 
I2C 3.4Mbps Peer Half Sync 
SPI 1Mbps Multi-master Full Sync 

UART (RS232) 115.2kbps Multi-master Full Async 

A.2.4.3 Integrated Sensors 

To simplify application development, many WSN platforms have built-in sensors 
such as humidity, temperature, acceleration, and photo sensors. With integrated 
sensor board design, the hardware platform can be made more compact and im-
mune to the noise induced by cables and connectors. However, integrating sensors 
on the hardware platforms can limit the general use of the platforms as different ap-
plications may have varying sensor requirements. 

A.2.5 Power Supply 

Currently, power supply is the main determining factor for the size and lifetime of 
the WSN hardware. Similarly to mobile phones, the battery or alternative power 
source is often the largest single component of WSN nodes. To miniaturise the sen-
sor node, a number of alternatives have been proposed. For example, Berkeley’s 
Golem Dust is designed to use an external laser beam to power up the sensor [49]. 
By relying on the external energy source, the size of the Golem Dust is only 
11.7m3, which is significantly smaller than typical WSN hardware. However, due to 
the line of sight constraint, this will be difficult to extrapolate to BSN applications.  
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Other power sources, such as the scavenging of power from temperature gradi-
ents or movement have been proposed. Due to the relatively high power require-
ment for radio transmission, batteries still remain the main source of power for cur-
rent WSN platforms. Among different battery technologies, Li-ion battery is the 
most popular choice for WSN hardware because of its high power density. Al-
though zinc-air batteries have a higher energy capacity than that of Li-ion batteries, 
the high rate of power drains from the current radio transceivers limits the direct 
use of zinc-air battery for WSN. This situation, however, is likely to change due to 
the emergence of new ultra-low power radio transceiver designs [50]. To simplify 
sensor deployment, most WSN platforms have integrated batteries. They include 
the Mica2Dot, Telos, MITes, BTNode, Smart-its [51], and SpotON. Primary batter-
ies are often the preferred choice, due to their higher power densities. For BSN ap-
plications, however, rechargeable batteries may be preferable as the batteries can be 
enclosed in the sensor casing. As discussed in Chapter 6, the development of new 
power scavenging techniques coupled with ultra-low power BSN designs could 
provide significant improvements in BSN design in the next few years.  

A.2.6 Operating System 

As is currently the case with personal computers, the Operating System (OS) is one 
of the key elements for the development of WSNs and BSNs. According to 
Moore’s law, transistor density on a die doubles every two years. This has contrib-
uted to the rapid growth in computer technologies and more powerful PCs are in-
troduced almost every six months. Likewise, the WSN hardware is expected to 
evolve as rapidly as that of the PC. 

Due to limited resources in WSN hardware, conventional embedded OS, such as 
Embedded Microsoft XP or Embedded Linux, are not suitable for WSN platforms. 
Thus far, a number of application-driven programming environments have been 
proposed. These include the Context Toolkit developed for the Smart-its project 
[52], the application development library for the RFRAIN platform, and µOS for 
µAMPs [53].  

Another application-driven OS, Palos (Power Aware Lightweight OS) for 
iBadge and CENS Medusa MK-2, was designed originally for the Smart Kindergar-
ten project in monitoring pupils [54]. Like a scaled down OS, Palos provides hard-
ware abstraction and a light-weight pseudo-real-time multitasking. Other develop-
ments include a C-based Multithreaded Operating System (MOS) which was 
proposed in the MANTIS project [7], and a C-based operating system SOS pro-
posed recently by UCLA for heterogeneous sensor deployments [55]. Contiki is an-
other C-based OS which supports preemptive multithreading based on an event-
driven kernel [63].  

In addition to C-based systems, Java virtual machine has also been adopted for 
WSN. These include the MagnetOS [64], and “Squawk VM” proposed by Sun 
which is a small J2ME virtual machine designed for resource constrained wireless 
sensors [62]. 



T
ab

le
 A

.2
 W

ire
le

ss
 se

ns
or

 n
et

w
or

k 
de

ve
lo

pm
en

t p
la

tfo
rm

s. 

Pl
at

fo
rm

s 
C

PU
 

C
lo

ck
(M

H
z)

 
R

A
M

/F
la

sh
 

/E
EP

R
O

M
 

R
ad

io
Tr

an
sc

ei
ve

r 
B

W
(k

bp
s)

 
Fr

eq
.

(M
H

z)
 

O
S 

Ye
ar

 
O

rg
an

is
at

io
n 

W
eC

 
A

tm
el

 A
T9

0L
S8

53
5 

4 
51

2/
8K

/3
2K

 
R

FM
 T

R
10

00
 

10
 

91
6.

5 
Ti

ny
O

S
 

19
98

 
U

C
 B

er
ke

le
y 

R
en

e 
1 

A
tm

el
 A

T9
0L

S8
53

5 
4 

51
2/

8K
/3

2K
 

R
FM

 T
R

10
00

 
10

 
91

6.
5 

Ti
ny

O
S

 
19

99
 

U
C

 B
er

ke
le

y 

AW
AI

R
S

 1
 

In
te

l S
tro

ng
A

rm
 S

A1
10

0 
59

-2
06

 
1M

/4
M

 
C

on
ex

an
t 

R
D

S
S

S
9M

 
10

0 
90

0 
M

ic
ro

C
/ 

O
S

19
99

 
R

oc
kw

el
l 

µA
M

P
S

 
In

te
l S

tro
ng

A
R

M
 S

A1
10

0 
59

-2
06

 
1M

/4
M

 
N

at
io

na
l 

LM
X3

16
2 

10
00

 
24

00
 

µO
S

 
19

99
 

M
IT

 

R
en

e 
2 

A
tm

el
 A

tm
eg

a 
16

3 
8 

1K
/1

6K
/3

2K
 

R
FM

 T
R

10
00

 
10

 
91

6.
5 

Ti
ny

O
S

 
20

00
 

U
C

 B
er

ke
le

y 

D
ot

 
A

tm
el

 A
tm

eg
a 

16
3 

8 
1K

/1
6K

/3
2K

 
R

FM
 T

R
10

00
 

10
 

91
6.

5 
Ti

ny
O

S
 

20
00

 
U

C
 B

er
ke

le
y 

M
ic

a 
A

tm
el

 A
tm

eg
a 

12
8L

 
4 

4K
/1

28
K/

51
2K

 
R

FM
 T

R
10

00
 

40
 

91
6.

5 
Ti

ny
O

S
 

20
01

 
U

C
 B

er
ke

le
y 

B
T 

no
de

* 
A

tm
el

 A
tm

eg
a 

12
8L

 
8 

4K
/1

28
K/

4K
 

ZV
40

02
 B

T/
 

C
C

10
00

 
10

00
 

24
00

 
Ti

ny
O

S
 

20
01

 
E

TH
 

S
po

tO
N

 
D

ra
go

nb
al

l E
Z 

16
 

2M
/2

M
 

R
FM

 T
R

10
00

 
10

 
91

6.
5 

 
20

01
 

In
te

l 

S
m

ar
t-i

ts
 

(L
an

ca
st

er
) 

P
IC

18
F2

52
 

8 
3K

/4
8K

/6
4K

 
R

ad
io

m
et

rix
 

64
 

43
3 

S
m

ar
t-i

ts
 

20
01

 
La

nc
as

te
r 

S
m

ar
t-i

ts
 

(T
ec

o)
[5

1]
 

A
TM

eg
a 

10
3L

 
4 

4K
/1

28
K

 
E

ric
ss

on
 B

T 
10

00
 

24
00

 
S

m
ar

t-i
ts

 
20

01
 

Te
co

 

M
ic

a2
* 

A
tm

el
 A

tm
eg

a 
12

8L
 

8 
4K

/1
28

K/
51

2K
 

C
hi

pc
on

 
C

C
10

00
 

38
.4

 
90

0 
Ti

ny
O

S
 

20
02

 
U

C
 B

er
ke

le
y/

 
C

ro
ss

bo
w

 

M
ic

a2
D

ot
* 

A
tm

el
 A

tm
eg

a 
12

8L
 

4 
4K

/1
28

K/
51

2K
 

C
hi

pc
on

 
C

C
10

00
 

38
.4

 
90

0 
Ti

ny
O

S
 

20
02

 
U

C
 B

er
ke

le
y/

 
C

ro
ss

bo
w

 

iB
ad

ge
 

A
tm

el
 A

tm
eg

a1
03

L 
6 

4K
/1

28
K

 
E

ric
ss

on
 B

T 
10

00
 

24
00

 
P

al
os

 
20

02
 

U
C

LA
 

C
E

N
S

 
M

ed
us

a 
M

K2
 

A
tm

el
 A

TM
eg

a1
28

L/
 

A
tm

el
 A

T9
1F

R
40

81
 

4/ 40
4K

/3
2K

 1
36

K
/1

M
 

TR
10

00
 

10
 

91
6 

P
al

os
 

20
02

 
U

C
LA

 

iM
ot

e1
 

Ze
ev

o 
ZV

40
02

 (A
R

M
) 

12
-4

8 
64

K
/5

12
K

 
Ze

ev
o 

BT
 

72
0 

24
00

 
Ti

ny
O

S
 

20
03

 
In

te
l 

U
3 

[6
0]

 
P

IC
18

F4
52

 
0.

03
1-

8 
1K

/3
2K

/2
56

 
C

D
C

-T
R

-0
2B

 
10

0 
31

5 
P

av
en

et
 

20
03

 
U

 T
ok

yo
 

S
pe

c 
8-

bi
t A

V
R

-li
ke

 R
IS

C
 c

or
e 

4-
8 

3K
 

FS
K

Tr
an

sm
itt

er
 

10
0 

 
Ti

ny
O

S
 

20
03

 
U

C
 B

er
ke

le
y 

R
FR

A
IN

 
C

C
10

10
 (8

05
1)

 
3-

24
 

2K
/3

2K
 

C
hi

pc
on

 C
C

10
10

 
76

.8
 

0.
3 

-1
00

0 
R

FR
A

IN
 

Li
br

ar
ie

s 
20

03
 

M
IT

 

N
ym

ph
 

A
tm

el
 A

tm
eg

a1
28

L 
4 

4K
/1

28
K/

51
2K

 
C

hi
pc

on
 C

C
10

00
 

38
.4

 
90

0 
M

an
tis

 
20

03
 

U
 C

ol
or

ad
o 



Pl
at

fo
rm

s 
C

PU
 

C
lo

ck
(M

H
z)

 
R

A
M

/F
la

sh
 

/E
EP

R
O

M
 

R
ad

io
Tr

an
sc

ei
ve

r 
B

W
(k

bp
s)

 
Fr

eq
.

(M
H

z)
 

O
S 

Ye
ar

 
O

rg
an

is
at

io
n 

Te
lo

s*
 

TI
 M

SP
43

0F
14

9 
8 

2K
/6

0K
/5

12
K

 
C

hi
pc

on
 C

C
24

20
 

25
0 

24
00

 
Ti

ny
O

S
 

20
04

 
U

C
 B

er
ke

le
y/

 
M

ot
ei

v 

M
ic

aZ
* 

A
tm

el
 A

tm
eg

a 
12

8L
 

8 
4K

/1
28

K
 

C
hi

pc
on

 C
C

24
20

 
25

0 
24

00
 

Ti
ny

O
S

 
20

04
 

C
ro

ss
bo

w
 

C
IT

 S
en

so
r 

N
od

e 
[6

1]
 

P
IC

16
F8

77
 

20
 

36
8/

8K
 

N
or

di
c 

nR
F9

03
 

76
.8

 
86

8 
Ti

ny
O

S
 

20
04

 
C

or
k 

In
st

itu
te

 
of

 T
ec

hn
ol

og
y 

B
S

N
 n

od
e 

TI
 M

SP
43

0F
14

9 
8 

2K
/6

0K
/5

12
K

 
C

hi
pc

on
 C

C
24

20
 

25
0 

24
00

 
Ti

ny
O

S
 

20
04

 
Im

pe
ria

l 
C

ol
le

ge
 

M
IT

es
 

nR
F2

4E
1 

(8
05

1)
 

16
 

51
2/

4K
 

N
or

di
c 

nR
F2

4E
1 

10
00

 
24

00
 

- 
20

04
 

M
IT

 

A
qu

is
G

ra
in

 
A

tm
el

 A
tm

eg
a1

28
L 

4 
4K

/1
28

K/
51

2K
 

C
hi

pc
on

 C
C

24
20

 
25

0 
24

00
 

- 
20

04
 

P
hi

lip
s 

R
es

ea
rc

h

R
IS

E
 

C
C

10
10

 E
M

 (8
05

1)
 

3-
24

 
2K

/3
2K

 
C

C
10

10
 E

M
 

76
.8

 
0.

3-
10

00
 

Ti
ny

O
S

 
20

04
 

U
C

R
 

P
ar

tic
le

2/
29

*[2
6]

 
P

IC
 1

8F
67

20
 

20
 

4K
12

8K
/5

12
K

 
R

FM
 T

R
10

01
 

12
5 

86
8.

35
 

S
m

ar
t-i

ts
 

20
04

 
Te

co
 

P
lu

to
 

TI
 M

SP
43

0F
14

9 
8 

4K
/6

0K
/5

12
K

 
C

hi
pc

on
 C

C
24

20
 

25
0 

24
00

 
Ti

ny
O

S
 

20
04

 
H

ar
va

rd
 

D
S

YS
25

 
A

tm
el

 A
tm

eg
a 

12
8 

4 
4K

/1
28

K
 

N
or

di
c 

nR
F2

40
1 

10
00

 
24

00
 

Ti
ny

O
S

 
20

04
 

U
C

C
 

E
nO

ce
an

 T
C

M
12

0 
P

IC
18

F4
52

 
10

 
1.

5K
/3

2K
/2

56
 

In
fin

eo
n 

TD
A 

52
00

 
12

0 
86

8 
Ti

ny
O

S
 

20
05

 
H

el
m

ut
 

S
ch

m
id

t 
U

ni
ve

rs
ity

 

ey
es

IF
X

v2
 

TI
 M

SP
43

0F
16

11
 

8 
10

K
/4

8K
 

In
fin

eo
n 

TD
A5

25
0 

64
 

86
8 

Ti
ny

O
S

 
20

05
 

TU
 B

er
lin

 

iM
ot

e2
 

In
te

l P
XA

 2
71

 
13

-1
04

 
25

6K
/3

2M
 

C
C

24
20

 
25

0 
24

00
 

Ti
ny

O
S

 
20

05
 

In
te

l 

uP
ar

t0
14

0i
lm

t*
 

rfP
IC

16
F6

75
 

4 
64

/1
K

 
rfP

IC
16

F6
75

 
19

.2
 

86
8 

S
m

ar
t-i

t 
20

05
 

Te
co

 

Tm
ot

e 
sk

y*
 

TI
 M

SP
43

0F
16

11
 

8 
10

K
/4

8K
/1

M
 

C
hi

pc
on

 C
C

24
20

 
25

0 
24

00
 

Ti
ny

O
S

 
20

05
 

U
C

 B
er

ke
le

y/
 

M
ot

ei
v 

E
m

be
r R

F 
M

od
ul

e*
 

A
tm

el
 A

tm
eg

a 
12

8L
 

8 
4K

/1
28

K
 

E
m

be
r 2

50
 

25
0 

24
00

 
E

m
be

rN
et

 
20

05
 

E
m

be
r 

XY
Z 

se
ns

or
 

no
de

 
O

K
I M

L6
7Q

50
0x

 
(A

R
M

/T
H

U
M

B
) 

1.
8-

57
.6

 
4K

/2
56

K/
51

2K
 

C
hi

pc
on

 C
C

24
20

 
25

0 
24

00
 

S
O

S
 

20
05

 
Ya

le
 

A
nt

* 
TI

 M
SP

43
0F

12
32

 
8 

25
6/

8K
 

N
or

di
c 

nR
F2

4A
P

1 
10

00
 

24
00

 
A

nt
 

20
05

 
D

yn
as

tre
am

 
In

no
va

tio
n 

In
c.

 

P
ro

S
pe

ck
z 

C
yp

re
ss

 C
Y8

C
27

64
 

12
 

25
6/

16
K

 
C

hi
pc

on
 C

C
24

20
 

25
0 

24
00

 
S

pe
ck

le
 

ne
t

20
05

 
U

 E
di

nb
ur

gh
 

Fl
ec

k 
A

tm
eg

a1
28

L 
8 

4K
/1

28
K/

51
2K

 
N

or
di

c 
90

3 
76

.8
 

90
2-

92
8 

Ti
ny

O
S

 
20

05
 

C
S

IR
O

 

S
un

 S
po

t 
A

tm
el

 A
T9

1F
R

40
16

2S
 

75
 

25
6K

/2
M

 
C

C
24

20
 

25
0 

24
00

 
S

qu
aw

k 
V

M
 (J

av
a)

 
20

05
 

S
un

 L
ab

s 



418       Body Sensor Networks 

For most research-based OS developments, the open source approach is pre-
ferred so as to facilitate the development of WSN applications. However, commer-
cial hardware platforms often use proprietary middleware, such as Ant, SmartMesh 
[56], SensiNet [57] and Agile-Link [58]. Thus far, the most widely adopted OS is 
the event-based TinyOS. With its open source initiative and ever growing TinyOS 
community, an increasing number of industrial- and research-based platforms are 
now supported by TinyOS. They include MicaZ, RISE, DSYS25, eyesIFXv2, EnO-
cean TCM120 [59], iMote2, Fleck and BSN node. A more detailed list is provided 
in Table A.2.  

A.3 Conclusions 

In this chapter, we have reviewed the common WSN development platforms that 
have emerged in recent years. As has been mentioned earlier, the hardware design 
of WSN nodes is a rapidly changing field and this appendix is only intended to out-
line some of the main efforts involved in this field. Although many of the WSN 
hardware platforms can be adapted for BSN applications, due to the specific re-
quirements and constraints imposed by BSNs, a dedicated environment for BSN re-
search and development is required. The platform will be expected to cater for both 
wearable and ambient sensing, with specific emphases on low-power design, con-
text awareness, and high bandwidth wireless communication. As a development 
tool, the platform should also address the ease of integration of different sensor de-
signs. In the next chapter, we will discuss the hardware and programming environ-
ment of the BSN development kit designed for this purpose. 
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Benny Lo and Guang-Zhong Yang 

B.1 Introduction 

Although there are a number of context-aware sensing platforms currently 
available [5, 6], the incorporation of different physiological sensors often re-
quires hardware modification. To facilitate research and development in BSNs, 
a general purpose BSN hardware platform, called the BSN node, has been de-
signed at Imperial College London. Figure B.1 illustrates the basic design of the 
BSN node and its relative size. With its stackable design, different types of sen-
sors can be easily incorporated. The BSN node follows the IEEE 802.15.4 stan-
dards and is suitable for most continuous, context-aware physiological monitor-
ing applications. The BSN node is supported by TinyOS and can be seamlessly 
integrated with other networks that have TinyOS supported hardware. In this 
appendix, we will describe the software and hardware components of the BSN 
development kit so that interested readers can use this as the basis for putting 
together some example BSN applications.  

B.2 BSN Architectural Design 

For the design of the BSN node, several major criteria have been considered: 

• Miniaturisation 
• Low cost 
• Low power consumption 
• Wireless communication 
• Secured and reliable protocol 
• Intelligent 
• Expandable  
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• Flexible 
• Programmable 
• Ease of sensor integration 

 Figure B.1 BSN node. (See colour insert.)
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Figure B.2 The system architecture of the BSN node. 

Instead of integrating all the components onto a single board, the BSN node is 
designed with only the processor, transceiver and memory on the main board 
and with other customisable components on stackable daughter boards. The ba-



B. BSN Development Kit and Programming Guide    425

sic structure of the BSN node is depicted in Figure B.2, illustrating the intercon-
nection through the main board connector. 

B.2.1 Microcontroller  

The BSN node uses the Texas Instrument (TI) MSP430F149 16-bit ultra low 
power RISC processor with 60K+256B of flash memory and 2KB of RAM [7]. 
As mentioned in Appendix A, the TI Microcontroller (MCU) can operate with 
280 A in active mode (1MHz 2.2V), 1.6 A in standby mode, and 0.1 A in off 
mode (RAM retention). To optimise the performance and power consumption of 
the MCU, the MSP430 provides different modes of operation and modular dis-
abling/enabling controls. In addition, it provides an extensive number of inter-
faces for integrating with other devices. They include two USART (Universal 
Synchronous/Asynchronous Receive/Transmit) interfaces and 48 configurable 
I/Os. For interfacing with analogue devices, a fast 12-bit A/D converter is in-
cluded in the MCU for handling up to eight different analogue signals. Figure 
B.3 schematically illustrates the functional blocks of the MSP430F149 proces-
sor.
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Figure B.3 The functional block diagram of MSP430F149. 

B.2.1.1 RISC Processor 

The CPU of the MSP430 has a 16-bit RISC architecture and sixteen registers 
are defined for reduced instruction execution. All operations (other than pro-
gram flow instruction) are performed as register operations [8], and the MSP430 
instruction set consists of 51 instructions with three formats (dual operands, sin-
gle operands and relative jump) and seven address modes, and each instruction 
can operate on word or byte data. 

To balance processing performance and power consumption, the MSP430 
provides one active mode and five selectable low-power operation modes as in-
dicated in Table B.1. In addition, the MSP430 provides three clock signals for 
different peripherals and the CPU, i.e.,
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• ACLK: auxiliary clock; mainly used for peripheral modules. 
• MCLK: master clock; the system clock used by the CPU. 
• SMCLK: sub-main clock; used by peripheral modules.  

Table B.1 MSP430 operation modes. 

Modes CPU MCLK SMCLK DCO’s DC 
generator ACLK 

Current 
draw ( A) 

at 3V, 1MHz 

Active mode (AM) 1 1 1 1 1 340 

Low-power mode 0 
(LPM0) 0 0 1 1 1 70 

Low-power mode 1 
(LPM1) 0 0 1 1 1 70 

Low-power mode 2 
(LPM2) 0 0 0 0 1 17 

Low-power mode 3 
(LPM3) 0 0 0 0 1 2 

Low-power mode 4 
(LPM4) 0 0 0 0 0 0.1 

1 : enabled, 0 : disabled 

B.2.1.2 Flash Memory 

The MSP430F149 has 60KB+256B of flash memory and the memory is parti-
tioned into main and information sections, where the main memory has two or 
more 512B segments, and the information section has two 128B segments. The 
segments are further divided into 64B blocks. The MSP430 can be programmed 
by using the JTAG (Joint Test Action Group) port, the UART serial interface, 
and the Bootstrap Loader (BSL). In addition, the MSP430 processor can also be 
programmed directly via its CPU which enables dynamic updating of the pro-
gram and the flash memory. To program the flash memory, the processor has to 
have a constant supply voltage of 2.7V or above.  

B.2.1.3 Digital Input/Output (I/O)

The MSP430 processor provides six digital (I/O) ports, P1-P6, where each port 
has eight I/O pins, and each pin can be individually configured and set. In addi-
tion, ports P1 and P2 have interrupt capability, as indicated in Figure B.3. To 
reduce the power consumption, unused I/O pins should be configured as output 
ports and left unconnected on the circuit board. 

B.2.1.4 Analogue to Digital Converter (ADC)

The MSP430 uses a 12-bit ADC module, called ADC12, which implements a 
12-bit SAR (Successive-Approximation-Register) core, reference generators and 
a sixteen word conversion-and-control buffer. The conversion-and-control 
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buffer allows up to sixteen independent ADC samples to be converted and 
stored without any CPU intervention. In addition, it contains two selectable 
voltage references (1.5V and 2.5V). The ADC12 converts the analogue signal 
with respect to the reference to digital values (NADC) ranging from 0 to 0FFFh 
based on the following formula:  

4095 in R
ADC

R R

V V
N

V V
−

+ −

−
=

−
(B.1)

where Vin = analogue input, VR-=GND, and VR+ = 1.5/2.5V. By setting the input 
multiplexer, eight external (A0 to A7) and four internal analogue signals 
(VeREF+, VREF+/VeREF, temperature sensor, (AVcc-AVss)/2) can be selected as the 
channels for conversion. The conversion function for the on-chip temperature 
sensor is as follows: 

0.00355( ) 0.986TEMP CV TEMP= + (B.2)

where TEMPC represents the temperature in Celsius. The ADC12 is optimised 
for low power operation, and will be automatically disabled when no conversion 
is in process.  

B.2.1.5 Timers 

The MSP430 provides two 16-bit timers/counters, Timer_A and Timer_B, as 
shown in Figure B.3. Timer_A is an asynchronous timer/counter with four oper-
ating modes: Stop (timer is halt), Up (counts from 0 to a predefined limit), Con-
tinuous (counts from 0 to 0FFFFh) and Up/Down (counts from 0 to the prede-
fined limit, then back down to 0). Similarly, Timer_B is also an asynchronous 
timer with four operating modes. However, the length of the Timer_B is pro-
grammable to be 8, 10, 12 or 16 bits  

B.2.1.6 Universal Synchronous/Asynchronous Receive/Transmit (USART)

The MSP430F149 provides two USART ports, and each can be configured to 
either as an UART or a SPI (Serial Peripheral Interface).  

• UART Mode (SYNC bit is cleared)
In UART mode, two pins are used, UTXD (transmit) and 
URXD (receive), for transmitting and receiving data. It sup-
ports 7- or 8-bit data communication with even, odd, or non-
parity. The baud rates can be set from 1200 to 115.2 kbps 
(kilo-bits-per-second).
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• SPI Mode (SYNC bit is set)
In SPI mode, three- or four-pin SPI mode is supported, where 
SIMO (Slave-In, Master-Out), SOMI (Slave-Out, Master-In),
UCLK (SPI clock) and STE (Slave Transmit Enable) pins are 
used for data communication. It can be configured to 7- or 8-
bit data size, and in either master or slave modes. The STE 
signal enables multiple slaves and masters on the bus, where it 
specifies which master/slave to gain control of the bus.  

B.2.1.7 Hardware Multiplier  

A hardware multiplier is provided by the MSP430. Instead of being integrated 
into the CPU, the hardware multiplier is designed to be a peripheral module 
where multiplications are performed independently without the processor’s in-
tervention. The multiplier supports signed/unsigned multiplication and accumu-
lation, as well as 16×16, 16×8, 8×16 and 8×8 bit operations.  

B.2.1.8 Watchdog Timer 

A 16-bit watchdog timer is provided by the MSP430 for resetting the MCU 
when the application program fails. Based on the preset time interval, the MCU 
will be reset if the timer expires. In addition, the module can be used as an in-
terval timer when the watchdog function is not required. 

B.2.2 Radio Transceiver 

To cater for the high bandwidth required for physiological sensors and ease the 
interface with other wireless sensors, the Chipcon CC2420 is used for the BSN 
node. As a IEEE 802.15.4 compliant chipset, the Chipcon CC2420 allows the 
BSN node to communicate with other wireless sensor networks.  

B.2.2.1 Serial Interface 

The CC2420 provides a 4-wire SPI interface (with pins SI, SO, SCLK and CSn) 
for interfacing with MCUs. It has been configured as a slave device which relies 
on the processor to initiate the communication. There are a total of 50 registers 
for setting and configuring the CC2420, and the internal RAM of the CC2420 
can also be accessed through the SPI interface.  

• Register Access 
Among the fifty registers, thirty-three registers are 16-bit con-
figuration and status registers, fifteen are 16-bit command 
strobes, and two are 8-bit registers for accessing the transmit 
and receive FIFO buffers. Registers are addressed by a 6-bit 
address. Figure B.4 shows the format of the CC2420 SPI 
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command for accessing the registers where a read/write bit 
and a RAM/register bit are included in addition to the 6-bit 
address. After each SPI command, 2-bytes of data are trans-
mitted, as illustrated in the timing diagram shown in Figure 
B.5.  

Figure B.4 CC2420 Register access command. 

Figure B.5 Timing diagram of the CC2420 SPI interface. 

• Status Byte 
As shown in Figure B.5, a status byte is returned on the MISO 
pin during the transfer of the register/RAM access command. 
The status byte indicates the status of the CC2420 and it con-
sists of six status bits, as shown in Table B.2. 

• Command Strobes 
Command strobes are single-byte instructions of CC2420, 
which enables the user to initiate and terminate functions of 
the chipset. Fifteen command strobes are provided by 
CC2420, and are listed in Table B.3. 

• RAM Access 
The internal 368 byte RAM can be accessed through the SPI 
interface, as shown in Figure B.5. Unlike register access, in 
RAM access mode, data is read and written one byte at a time 
and a 9-bit address is used for accessing the RAM. As indi-
cated in Figure B.5, apart from the 7-bit address (A0-A6) 
specified in the SPI command, 2-bits (B0-B1) of the second 
byte of the SPI data is used for accessing the RAM. As the 
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RAM is divided into three memory banks: TXFIFO (bank 0), 
RXFIFO (bank 1) and security (bank 2), the MSB (B0-B1) se-
lects one of the three memory banks and the LSB (A0-A6) se-
lects the address within the selected bank.   

Table B.2 CC2420 status byte format.

Bit Name Description 

7 - Reserved 

6 XOSC16M_STABLE 0: 16MHz crystal is not running 
1: 16MHz crystal is running 

5 TX_UNDERFLOW 0: No underflow 
1: Underflow 

4 ENC_BUSY 0: Encryption is idle 
1: Encryption is busy 

3 TX_ACTIVE 0: RF Transmission is idle 
1: RF Transmission is active 

2 LOCK 0: The PLL is out of lock 
1: The PLL is in lock 

1 RSSI_VALID 0: The RSSI value is not valid 
1: The RSSI value is valid 

0 - Reserved  

Table B.3 CC2420 command strobes. 

Address Register Description 
0x00 SNOP No operation 
0x01 SXOSCON Turn on the crystal oscillator 
0x02 STXCAL Enable and calibrate frequency synthesizer for TX 
0x03 SRXON Enable RX 
0x04 STXON Enable TX after calibration 

0x05 STXONCCA If CCA indicates a clear channel: 
Enable calibration, then TX 

0x06 SRFOFF Disable RX/TX and frequency synthesizer 
0x07 SXOSCOFF Turn off the crystal oscillator and RF 
0x08 SFLUSHRX Flush the RX FIFO buffer and reset the demodulator 
0x09 SFLUSHTX Flush the TX FIFO buffer 
0x0A SACK Send acknowledge frame with pending field cleared 
0x0B SACKPEND Send acknowledge frame with pending field set 
0x0C SRXDEC Start RXFIFO in-line decryption/authentication 

0x0D STXENC Start TXFIFO in-line encryption/authentication without 
starting TX 

0x0E SAES AES stand alone encryption strobe 
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• FIFO Access 
Like the RAM and registers, the built-in buffers, TXFIFO and 
RXFIFO, can also be accessed through the SPI interface. The 
TXFIFO is a write-only buffer, but data can be read back us-
ing RAM access. When data is written to the TXFIFO, the 
status byte will be returned which indicates if the buffer is un-
derflow. On the other hand, the RXFIFO can be read and writ-
ten; however, writing to RXFIFO should be restricted to de-
bugging or security operations. As for RAM access, data is 
read and written one byte at a time.  

B.2.2.2 IEEE802.15.4 Modulation Format 

The IEEE 802.15.4 standard specifies the 2.4GHz Direct Sequence Spread 
Spectrum (DSSS) RF modulation. Figure B.6 shows the block diagram of the 
modulation and spreading function of the CC2420. Data is transmitted in the or-
der of LSB first, except for security related fields where MSB is transmitted 
first. Each byte is divided into two symbols (4-bit each), and each symbol is 
then mapped to one of the sixteen predefined pseudo-random sequences (32 
chips each). The chip sequence is transmitted at 2MChips/s with the order of 
least significant chip transmitting first. The Offset-Quadrature Phase Shift Key-
ing (O-QPSK) modulation format is specified in the standard where each chip is 
shaped as a half-sine waveform, transmitted alternately in the I and Q channels 
with one half chip period first. Further details on different modulation formats 
can be found in [9] and [10].  

Bit-to-Symbol Symbol-to-Chip O-QPSK
Modulator

Modulated
Signal

Transmitted
bit-stream
(LSB first)

Figure B.6 IEEE 802.15.4 modulation [9]. 

B.2.2.3 IEEE802.15.4 Frame Format 

The IEEE 802.15.4 specifies the protocol for the physical and MAC layers for 
wireless sensor communication, and Figure B.7 details the frame format of the 
protocol used. 

• Synchronisation Header 
The Synchronisation Header (SHR) consists of the preamble 
sequence and the Start Frame Delimiter (SFD). The preamble 
sequence is defined to be 4-bytes of 0x00 and the SFD has a 
value of 0xA7. In addition to the standard preamble length 
and SFD value, the CC2420 allows users to change the length 
and SFD for other non-IEEE compliant applications.  
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Figure B.7 IEEE 802.15.4 frame format [9]. 

• Length Field 
The 7-bit frame length indicates the number of bytes in the 
MAC Protocol Data Unit (MPDU), excluding the length of 
the field itself. It also includes the Message Integrity Code 
(MIC), if authentication is enabled.  

• MAC Protocol Data Unit 
The MPDU consists of a Frame Control Field (FCF), data se-
quence number, address information, and frame payload and 
Frame Check Sequence (FCS), as shown in Figure B.7. The 
format of the FCF is illustrated in Figure B.8. As there is no 
hardware support for the data sequence number, the applica-
tion software has to assign and verify the sequence number to 
the field.

Figure B.8 Format of the FCF [9]. 

• Frame Check Sequence (FCS)
A 2-byte FCS is defined in the MAC footer to validate the 
packet. The FCS is calculated over the MPDU and is gener-
ated and verified automatically by hardware. The FCS poly-
nomial is defined as follows [9]: 

16 12 5 1X X X+ + + (B.3)

As the FCS verification is handled by the hardware, the FCS 
will be attached to the packet automatically in transmit mode. 
In receive mode, the FCS will be verified by the hardware and 
will not be written to the RXFIFO. 
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B.2.2.4 RF Data Buffering 

With the two FIFO, different transmit and receive modes are provided by the 
CC2420: 

• Buffered transmit mode (TX_MODE 0) 
• Buffered receive mode (RX_MODE 0) 
• Unbuffered, serial mode 

In buffered transmit mode, packets are buffered in the TXFIFO first before 
transmission. If too few bytes are written to the TXFIFO, the underflow alarm 
will be issued (the TX_UNDERFLOW status bit will be set) and the transmis-
sion will then be stopped automatically until the alarm is cleared (by issuing an 
SFLUSHTX command). 

In buffered receive mode, received packets are first stored in the RXFIFO. If 
an overflow occurs, an alarm will be signalled (the FIFO pin will be low whilst 
the FIFOP pin is high) to the microcontroller, and the reception will be stopped 
immediately until the alarm is cleared (by issuing an SFLUSHRX command 
twice).    

The unbuffered mode is designed for debugging and evaluation purposes. In 
unbuffered mode, a synchronised clock (250 kHz) is provided by the CC2420 
through the FIFOP pin, and the FIFO pin is used as a data input/output channel. 
If the serial transmit mode is enabled (MDMCTRL1.TX_MODE=1), a synchro-
nisation sequence is inserted at the beginning of each frame as in buffered 
mode. If serial receive mode is enabled (MDMCTRL1.RX_MODE=1), byte 
synchronisation is performed by setting the FIFOP clock to idle until a start of 
frame delimiter has been detected. 

B.2.2.5 Address Recognition 

The CC2420 provides a hardware address recognition function. If enabled, the 
address in the received packet will be checked against the following require-
ments:  

• Frame type is valid 
• If it is a beacon frame, the source PAN = macPANId, unless 

macPANId=0xFFFF 
• If a destination PAN is included, the destination PAN = 

macPANId or 0xFFFF (broadcast) 
• If a short destination address is included, it shall equal to 

macShortAddress or 0xFFFF( broadcast) 
• If an extended destination address is included, it shall equal to 

the ExtendedAddress 
• If only source addressing fields are included, the device has to 

be a PAN coordinator and the source PAN=macPANId 
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The CC2420 will disregard the frame if any of the requirements has not been 
met.  

B.2.2.6 Acknowledge Frames 

To comply with the IEEE 802.15.4 standard, the CC2420 provides a hardware 
acknowledgement function where, if enabled, an acknowledge frame is trans-
mitted automatically whenever a valid packet is received (the address is recog-
nised with the acknowledge request flag set and a valid CRC). Figure B.9 de-
picts the acknowledge frame format specified in the standard. 

Figure B.9 IEEE 802.15.4 acknowledge frame format [9]. 

For a beacon-based network, instead of sending the acknowledge frame imme-
diately, the acknowledge frame will be sent after the first backoff slot boundary 
(~20 symbol periods), and the boundary is set by adjusting the 
SACK/SACKPEND register via the microcontroller. The timing diagrams for 
the packet acknowledgement of a beacon- and nonbeacon-based system are il-
lustrated in Figure B.10. 
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Figure B.10 IEEE 802.15.4 acknowledge frame timing [10]. 

B.2.2.7 MAC Security Operations (Encryption and Authentication)

The CC2420 encapsulated a hardware 128-bit AES-based encryption/decryption 
engine to provide the security operations required for IEEE 802.15.4 MAC [11]. 
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To allow real-time secured MAC, the encryption/decryption processes are per-
formed within the transmit and receive FIFO buffers on a frame basis. 

Keys

The CC2420 provides two 128-bit security keys for encryption/decryption. Dif-
ferent keys can be selected for encryption and decryption. The keys are stored in 
the CC2420 RAM with the addresses 0x100 and 0x130.  

Stand-Alone Encryption 

Despite inline security operation, the CC2420 also provides standalone encryp-
tion with 128-bit plaintext and 128-bit keys. The plaintext is stored in a stand-
alone buffer located in the RAM, and it will be overwritten by the cipher-text 
after encryption.  

In-Line Security Operations 

To provide a secured MAC, different modes of security functions are provided 
by the CC2420, which are CBC-MAC (Cipher Block Chaining Message Au-
thentication Code), CTR (Counter Mode Encryption) and CCM (Counter with 
CBC-MAC). In the CBC-MAC mode, inline authentication is provided by the 
CC2420 hardware, where each message depends on the previous encrypted 
message and an MIC is attached to each message being transmitted. In the CTR 
mode, the CC2420 hardware encrypts a set of input blocks, called counters, 
which will be XORed with the plaintext. To handle real-time data transmission, 
the encryption and decryption are performed on FIFOs directly. 

CCM is the combination of both CTR and CBC-MAC to provide encryp-
tion and authentication within an operation and with a single key. With the 
hardware encryption and decryption engine, the CC2420 can provide inline se-
curity operations on the MAC layer, and Table B.4 illustrates the time required 
for different security operations.  

Table B.4 CC2420 security timing example [10]. 

Mode Time (µs) 
CCM 222 
CTR 99 

CBC-MAC 99 
Stand-alone 14 

B.2.2.8 RSSI/ Energy Detection 

CC2420 has a built-in RSSI (Received Signal Strength Indicator) which indi-
cates the strength of the RF power received. The RSSI Value (RSSI_VAL) is 
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measured by averaging the signal reading over eight symbol periods (128µs), 
and it can be converted to RF power by using the following equation [10]: 

_ _ [ ]P RSSI VAL RSSI OFFSET dBm= + (B.4)

where RSSI_OFFSET is approximately -45. In addition to testing radio cover-
age, the RSSI measurement can also be used for estimating the link quality to 
determine the quality of the received packet. 

B.2.2.9 Clear Channel Assessment 

To facilitate the implementation of the CSMA-CA function, the CC2420 pro-
vides a Clear Channel Assessment (CCA) signal which is based on thresholding 
the RSSI reading. If the channel is clear for at least eight symbol periods, the 
CCA signal will be triggered. The CC2420 can be set to transmit only when the 
channel is clear based on the CCA (by setting the STXONCCA register), in or-
der to avoid collision.  

B.2.2.10 Frequency and Channel Programming 

The IEEE 802.15.4 specifies sixteen channels (11 to 26) within the 2.4GHz 
band, and the CC2420 can be programmed to any of these channels to avoid in-
terference. The RF frequency of channel k is given by [9]: 

2405 5( 11) 11 26Fc k MHz k= + − = − (B.5)

To select to the specific channel k, the FSCTRL.FREQ register in the CC2420 
should therefore be set to [10]: 

. 357 5( 11)FSCTRL FREQ k= + − (B.6)

B.2.2.11 Battery Monitor 

As an internal voltage regulator is embedded in the CC2420, a battery monitor 
alarm is provided by the chip where a threshold can be set to trigger an alarm if 
the supply voltage is below the prescribed threshold. The battery status bit 
(BATTMON_OK) will be set to 0 (battery low) if the supply voltage is below 
the toggle voltage, which is obtained by [10]: 

72 _1.25
27toggle

BATTMON VOLTAGEV V −= (B.7)

where BATTMON_VOLTAGE is the 5-bit (0 to 31) control register for adjust-
ing the alarm threshold. 
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B.2.2.12 Output Power Programming 

The radio transmission power of the CC2420 can be programmed by adjusting 
the TXCTRL.PA_LEVEL register. Table B.5 lists the output power settings, the 
corresponding register value, and typical current consumption of the CC2420. 
Although the transmission power can be adjusted to lower the power consump-
tion for short-range applications, the reception power (which usually consumes 
more power than data transmission) cannot be changed, which limits the usage 
of the power adjustment function.  

Table B.5 CC2420 output power settings and typical current consumption [10]. 

PA_LEVEL TXCTRL Register Output Power (dBm) Current Consumption 
(mA) 

31 0xA0FF 0 17.4 
27 0xA0FB -1 16.5 
23 0xA0F7 -3 15.2 
19 0xA0F3 -5 13.9 
15 0xA0EF -7 12.5 
11 0xA0EB -10 11.2 
7 0xA0E7 -15 9.9 
3 0xA0E3 -25 8.5 

B.2.2.13 Low Power Operation 

In order to minimise the power consumption, the CC2420 should be powered 
down whenever wireless communication is not required. Further reduction can 
be achieved by disabling the internal voltage regulator; however, the interfacing 
circuit has to be redesigned, and registers and RAM configurations have to be 
reprogrammed.  

B.2.3 Flash Memory 

The BSN node is designed with an on-board flash memory for enabling high-
speed sampling and dynamic program updates. For this purpose, a 4-megabit (or 
512KB) Atmel AT45DB041B serial flash memory module is used [12]. The 
AT45DB041B is designed for low power operation, where it can operate at 
2.7V and consumes only 4mA in typical read cycle and 2µA during standby 
mode. Although it requires relatively low power, the AT45DB041B can perform 
high speed read/write operations with a maximum clock speed of 20MHz, in 
conjunction with its two 264-bytes SRAM data buffers. In addition, the 
AT45DB041B provides an SPI interface for storing and retrieving the data. Fig-
ure B.11 illustrates the block diagram of the AT45DB041B chipset.  

As shown in the diagram, the memory is organised as pages, and it consists 
of 2048 pages with 264 bytes in each page. As such, rather than byte operation, 
it supports page program operation, where memory is read and written in pages. 
To read/write a page from the flash memory, the MCU can choose to load the 
data onto the buffer first before accessing the memory or read/write from/to the 



438    Body Sensor Networks 

flash memory directly. In addition to read/write operations, it also provides 
functions for erasing the memory, such as the page erase function for erasing a 
page and the block erase function for erasing a block of eight pages.   

Flash memory array

Pages (264 Bytes)

Buffer 1 (264 Bytes) Buffer 2 (264 Bytes)

SPI Interface

I/O Interface

Figure B.11 AT45DB041B block diagram. 

B.2.4 Board Connector 

A stackable design is adopted for the BSN node; in other words, different sensor 
boards can be stacked on top of the node and different battery boards can be at-
tached depending on the application requirements. To achieve this, two types of 
connectors are surface-mounted on each side of the board, and these are called 
the plug (female) and the socket (male), as shown in Figure B.12 (top). The plug 
is located on the top side of the board (where the LEDs are located), and the 
socket is on the other side of the node.  

Based on the 20-pin surface mount connectors, various signal interfaces are 
provided by the BSN node. Figure B.12 (bottom) shows the schematic diagrams 
of the connectors with their pins labelled with associated signal interfaces. The 
descriptions of the pin labels are listed in Table B.6.   

As shown in Figure B.12, the connectors are wired similarly to a bus where 
signals are designed to pass through from one side of the board to another, in 
order to provide the stackable functionality. To ensure the boards are properly 
connected, an arrow is printed next to each connector to indicate the direction of 
the board, and boards have to be connected with the arrows pointing in the same 
direction as shown in Figure B.13.  



B. BSN Development Kit and Programming Guide    439

    (Plug) (Socket)

     
   (Plug) (Socket) 

Figure B.12 BSN board connectors and the schematics: plug (left) and 
socket (right). 

Table B.6 BSN board connector pin descriptions.

Pin Description 
VCCin Power 
ADC0 Analogue channel 0 
ADC1 Analogue channel 1 
ADC2 Analogue channel 2 
ADC3 Analogue channel 3 
ADC4 Analogue channel 4 
ADC5 Analogue channel 5 
Sensor_PWR Power to sensors 
Sensor_SCL I2C clock for sensors 
Sensor_SDA I2C Data for sensors 
GND Ground 
UART1TX UART 1 transmit 
UART1RX UART 1 receive 
TCK Test clock for programming 
RESET Reset 
P_DVCC USB 3.3V power 
UART0TX UART 0 transmit 
UART0RX UART 0 receive 
I2C_SCL I2C Clock 
I2C_SDA I2C Data 
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Figure B.13 Stacking a sensor board onto a BSN node. 

B.2.5 Antenna 

Typical BSN applications require relatively short-range (2-3m) transmission. To 
enable different antenna design, the BSN node is designed with only the mount-
ing holes (Ant and GND) for the user to try out different antenna designs. Even 
without an antenna, the BSN node can still transmit and receive data within a 
very short distance (~1m). For practical applications, dipole antenna would be 
preferred and this can easily be soldered onto the node through the mounting 
holes. Figure B.14 (left) shows a BSN node fitted with a dipole antenna. As a 
2.4GHz transceiver is used, for a /2-dipole antenna, the length of the antenna 
should be 5.8cm (2.9cm on each arm), because L=14250/f where f is the modu-
lation frequency in MHz and L is the length of the antenna (i.e. L=5.8 as 
f=2450MHz). For a /4-monopole antenna, the length of the antenna should be 
2.9cm (i.e. L=7125/f). Alternatively, ceramic antennas can also be integrated 
onto the BSN node as shown in Figure B.14 (right). 

       

Figure B.14 BSN nodes with a dipole antenna (left) and a ceramic an-
tenna (right). 
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B.3 BSN Development Kit 

To facilitate the development of BSNs, the BSN development kit is designed to 
simplify the prototyping of new biosensors and enable research and develop-
ment in novel BSN applications. With the BSN development kit, users can pro-
gram the sensors, experiment with different network configurations, test out dif-
ferent batteries, and build simple context aware sensing applications. The BSN 
development kit consists of five components, shown in Figure B.15. 

• Two BSN nodes 
• USB Programmer 
• Sensor board 
• Prototype board 
• Battery board 

Figure B.15 The BSN development kit. 
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B.3.1 BSN Nodes 

With each BSN development kit, two BSN nodes are provided. The two BSN 
nodes are identical and can be programmed by using the USB programmer. To 
aid the debugging of the program, three programmable LEDs are incorporated 
in each node. It should be noted that by default, no antenna is fitted onto the 
nodes and it is down to the user to fit their preferred choice of antenna. As men-
tioned earlier, even without the antenna, the nodes can still communicate wire-
lessly within a short range of ~1m. Through the use of the other accessory 
boards provided, the two BSN nodes can form a basic peer-to-peer network for 
simple wireless sensing applications.  

B.3.2 USB Programmer 

The USB programmer is essential for programming the BSN nodes and interfac-
ing with a host computer. The USB programmer consists of the following main 
components, and these are highlighted in Figure B.16: 

• BSN board connectors 
• USB interface chipset 
• LEDs

USB Interface chip

LEDs BSN board connector

Figure B.16 USB programmer board. 

The USB programmer is designed specifically with two BSN board connectors 
(one on each side of the board) to allow the stacking of sensors or BSN nodes 
on either side of the programmer. Instead of relying on battery power, the USB 
programmer draws power directly from the USB connection.  

The USB interface chipset (FTDI FT232BM) enables communication be-
tween a PC and a BSN node via a serial connection. When connecting the USB 
programmer to the PC, it will be recognised as a USB serial port, and PC appli-
cation programs can be in communication with the BSN node via a specific 
COM port. In addition, the USB serial port will also be used by the TI BSL for 
programming the BSN node.  
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B.3.3 Sensor Board 

To assist in the development of BSN applications, a simple sensor board is pro-
vided with the development kit. The sensor board consists of the following main 
components: 

• 2D accelerometer 
• Temperature sensor 
• BSN board connectors 
• Extension slot  

The components of the sensor board are highlighted in Figure B.17, where all 
the sensors are located on the top-side of the board. In addition, the board con-
nectors are mounted on both sides of the board. Similarly to the BSN node and 
USB programmer, the board connectors’ signal pins are connected like a bus, 
which enables the addition of other sensor boards. This also allows the sensor 
board to be stacked on top of or at the bottom of a BSN node. 

BSN board 
connectors

2-axis
Accelerometer

Temperature
Sensor

Extension for additional accelerometer

Top Bottom

Figure B.17 Sensor board.

The accelerometer and the temperature sensors obtain power from the 
SENSOR_PWR pin of the BSN board connector, which allows the user pro-
gram to activate/deactivate the sensors by setting/clearing the SENSOR_PWR 
pin. In this way, sensors can be switched on or off as required in order to save 
power. 

B.3.3.1 Accelerometer 

An Analogue Device ADXL202AE two-axis accelerometer is used in the sensor 
board. The analogue outputs of the two axes are connected to channels ADC2 
(X axis) and ADC3 (Y axis). Figure B.18 shows a schematic diagram of the ac-
celerometer designed for the sensor board. 
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Figure B.18 Schematic of the two-axis accelerometer. 

The accelerometer is a MEMS two-axis, +/-2G device, which is based on the 
force of gravity to determine the orientation and acceleration of the object in 
space. Figure B.19 illustrates the sensor’s response towards changes in tilt [13]. 
The ADXL202AE is a low cost, low power accelerometer with power consump-
tion of less than 0.6mA. It has a relatively high sensitivity of 2mg resolution at 
60Hz. In addition to the analogue readings, the ADXL202AE also provide digi-
tal outputs for different applications. 

X

y

0o

+90o

-90o

1g

Figure B.19 X and Y axis respond to the changes in tilt.

In addition to measuring acceleration, the accelerometer can also be used for 
measuring tilt, movement, and vibration. To convert the measurement to tilt an-
gle, the following equations can be used [13]: 

arcsin( )
arcsin( )

Pitch Ax
Roll Ay

=
=

(B.8)

where Ax and Ay are the normalised outputs of the two-axis accelerometer. To 
measure 360o of tilt, two accelerometers oriented perpendicular to each other are 
required.  



B. BSN Development Kit and Programming Guide    445

B.3.3.2 Temperature Sensor 

A Panasonic ERTJ1VR103J temperature sensor is integrated on the sensor 
board for measuring the ambient temperature. The sensor signal is connected to 
the channel ADC1 provided by the board connector. A schematic diagram of the 
temperature sensor is shown in Figure B.20.  

Figure B.20 Schematic of the temperature sensor.

The ERT1 VR103J is a negative temperature coefficient resistor where the re-
sistance of the sensor changes as ambient temperature varies. The base resis-
tance of the sensor is 10k Ohm at 25°C [14]. Figure B.21 illustrates the tempera-
ture sensor resistance at different temperature settings. 
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Figure B.21 Resistance to temperature conversion. 

To convert the ADC reading to temperature, the following equations can be 
used: 
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where Vo is the reading from the ADC and T is the resulting temperature in °C.            

B.3.3.3 Extension Slot 

In order to introduce additional sensors to form a 3D accelerometer, four signal 
points have been designed on the sensor board, as highlighted in Figure B.22: 

• Vcc – power for the sensor 
• AccelX – for X axis accelerometer signal :ADC channel 0 
• AccelY – for Y axis accelerometer signal: ADC channel 5 
• GND – Ground 

Vcc

AccelX AccelY GND

Figure B.22 Extension slot on the sensor board. 

For capturing acceleration along the third axis, the additional accelerometer has 
to be mounted perpendicularly to the sensor board, as shown in Figure B.23. 
However, no support circuitry has been designed for the additional sensor and 
no power control is provided. 

Figure B.23 Board configuration for three-axis accelerometer. 
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B.3.4 Battery Board 

Since the power source is one of the main components of BSNs, the battery 
board in the BSN development kit is designed to be flexible in order to cater for 
different application requirements. The board consists of the following four 
main components as shown in Figure B.24:  

• Power on/off switch 
• Reset button 
• Battery retainer  
• BSN board connector 

On/Off switch
Reset button

BSN board connectorsBattery retainerTop Bottom

Figure B.24 The BSN battery board. 

To simplify the testing and debugging of BSN nodes, the power switch and the 
reset button are provided in order to control and reset the BSN node. To connect 
to a BSN node, the BSN board connector is mounted on one side of the battery 
board. Although the BSN board connector can connect to up to 20 signals, the 
battery board only uses three signals for powering up and resetting the BSN 
node, as shown in Figure B.25. This figure illustrates the PCB layout, and Fig-
ure B.26 shows the schematic of the battery board.  

To ease the testing of power usage and permit the use of different batteries, 
the battery board is designed to fit three different kinds of battery mountings 

• CR123 
• 1/2AA PCB mount batteries 
• Coin cell batteries CR2430/CR2450 
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 (Top) (Bottom) 

Figure B.25 The PCB layout of the BSN battery board. 

Figure B.26 Schematic diagram of the battery board. 

B.3.4.1 Change to a Different Battery 

The battery board is designed to enable the testing of different battery configu-
rations such as the CR24350/CR2450, CR123, or ½ AA PCB mounted batteries. 
The battery board comes with a retainer for the CR2430/CR2450 battery, and 
readers can easily change this to a different battery type by simply replacing the 
retainer. To change to a different battery, you need first to unsolder the coin cell 
battery retainer, as shown in Figure B.27. 
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Figure B.27 Unsoldering the battery retainer. 

In order to use a CR123 battery, the positive terminal of the retainer on the left 
side of the board has to be insulated with a piece of electric tape to avoid short-
ing, as highlighted in Figure B.28. Battery clips for the CR123 battery can then 
be soldered onto the board. For mounting a ½ AA PCB battery, the battery can 
be soldered directly onto the board.  

Figure B.28 Soldering the mounting for CR123 batteries. 

B.3.5 Prototype Board 

A prototype board is included in the development kit for the evaluation of dif-
ferent sensors. The design of the prototype board is simple and it consists of just 
one pair of BSN board connectors (a plug and a socket) and a test point for each 
signal of the BSN board connector. As such, the board can also be used as a 
board adaptor, a hardware testing tool, or an interface to other processors. Fig-
ure B.29 shows the top and bottom sides of the prototype board with board con-
nectors highlighted. The PCB layout and schematic diagram of the prototype 
board are shown in Figure B.30 and Figure B.31, respectively. 

BSN board
connectors

Top Bottom

Figure B.29 BSN prototype board. 

- +
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 (Top)  (Inner 1)  (Inner 2)   (Bottom) 

Figure B.30 PCB layout of the prototype board.

B.3.5.1 Sensor Board Design 

Prototype board is designed to ease the integration, prototyping and testing of 
sensors. To this end, both digital and analogue channels are provided for inter-
facing with different sensors. They include: 

Figure B.31 Schematic of the BSN prototype board. 

• Analogue channels (ADC0-ADC5) 
• I2C (I2C_SCL, I2C_SDA) 
• UART (UART0TX/UART1RX and UART1TX/UART1RX) 

To integrate an analogue sensor to the BSN node, the following points need to 
be observed: 

• The analogue sensor signal has to be within the range of 0-3V. 
• The power (SENSOR_PWR) and ground (GND) must be 

connected to the sensor. 
• The sensor output must be connected to one of the ADC 

channels (ADC0-ADC5). 

Figure B.32 illustrates an example prototype with an accelerometer attached to 
the sensor board in order to provide measurements on all three axes.  
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Figure B.32 Integration of an analogue sensor using the prototype board. 

To interface with an I2C digital sensor: 

• Use the pins SENSOR_PWR and GND to power up the sensor 
• Connect the sensor’s I2C clock signal to the SENSOR_SCL 

pin and the data signal to the SENSOR_SDA pin 

To interface with a sensor with an UART/RS232 interface, you need to observe 
the following: 

• As the RS232 signal can operate up to ±15V, a RS232 line 
driver (such as the MAX3232) is required to interface with a 
RS232 based sensor. 

• UART0TX/UART0RX or UART1TX/UART1RX pins can be 
used to interface with the sensors. 

B.4 TinyOS 

The BSN node uses TinyOS, by U.C. Berkeley, which is a small, open source, 
energy efficient sensor board operating system [15]. It provides a set of modular 
software building blocks, out of which designers can choose the components 
they require. The size of these files is typically as small as 200 bytes and thus 
the overall program size is kept to a minimum. The Operating System (OS) 
manages both the hardware and the wireless network by taking sensor meas-
urements, making routing decisions, and controlling power dissipation.  

Traditionally, proprietary programs are developed for embedded systems. To 
enable cross-platform software development and provide practical hardware ab-
stractions, different operating systems have been introduced for embedded sys-
tems. These include Microsoft’s Pocket PC, Java 2 Platform Micro Edition, and 
embedded Linux. However, due to the extensive overhead required for these 
operating systems, which offer multithreaded processing support and generic 
device interfacing, embedded operating systems are typically designed for rela-
tively powerful processors rather than those suitable for WSNs.  

Recently, a number of operating systems for wireless sensors have been in-
troduced, and TinyOS is by far the most widely adopted OS mainly due to its 
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open source paradigm and large community base. Because of resource con-
straints, a new programming language, called nesC, is proposed for the realisa-
tion of the structural design and reusable code concepts of TinyOS for miniatur-
ised sensors. To facilitate the reusability of the source code and minimise the 
overhead of the program binary, TinyOS adopts a component-based architec-
ture. In addition, to optimise power usage, TinyOS utilities an event-based exe-
cution model where programs are event-driven and the relevant resources are re-
leased once the handler completes.   

To adapt to different hardware platforms, a flexible hardware abstraction 
layer within the core of TinyOS enables its support for a wide range of hardware 
platforms. As well as easing adaptation of different hardware platforms, the 
hardware abstraction layer greatly simplifies software development for WSNs. 
Furthermore, TinyOS also provides a set of development tools, namely 
TOSSIM [16], Deluge [17] and TinyDB [18], to aid in the research and devel-
opment of WSN applications. Due to its efficient design, wide-ranging commu-
nity support, and open source paradigm, TinyOS has become one of the most 
widely adopted OS for WSNs.  

In the following sections, we will provide an introduction to the nesC pro-
gramming language, followed by a description of TinyOS’ execution model and 
hardware abstraction design. We will conclude with an overview of two TinyOS 
development tools, TOSSIM and Deluge, which are potentially applicable to 
BSN developments.  

B.4.1 nesC 

nesC is a programming language designed for low power, miniaturised wireless 
sensors with tight resource constraints. To enhance the usability of the language, 
nesC is based on a C-like syntax, and it adopts the code efficiency and simpli-
fied low-level features of the C language. It also introduces a structural design 
and addresses the issue of safe coding for microcontrollers [19].  

In order to run programs on highly constrained hardware platforms, the nesC 
has a static configuration where no dynamic memory allocation is allowed. The 
programs are linked statically and optimised by linking only to the relevant 
components. nesC programs are built by connecting (“wiring”) components to-
gether. To specify the connection, a set of interfaces are defined for each com-
ponent which specifies the commands it provides and events it handles [20]. For 
the actual implementation of the components, it consists largely of two ele-
ments, configurations (header files) and modules (source files), in a similar pro-
gramming paradigm to regular C programs. 

B.4.1.1 Interface 

Interfaces define the interaction between two components (the user and the pro-
vider). Interfaces are bidirectional, which means that a set of functions are de-
clared that the provider must implement (commands), and another set of func-
tions are declared that the users must implement (events) [20]. The basic 



B. BSN Development Kit and Programming Guide    453

interface for components is the standard control interface which defines the 
commands for initialising, starting, and stopping of the component.  

interface StdControl { 
 command result_t init (); 
 command result_t start(); 
 command result_t stop ();  
}

StdControl.nc

As shown above, the standard control interface is mainly designed for control-
ling the component and it consists of a number of commands. For components 
which return readings or issue events, event handlers will be required. As an ex-
ample, the interface of the Timer component can be described as: 

includes Timer; // make TIMER_x constants available 
interface Timer { 
 command result_t start(char type, uint32_t interval); 
 command result_t stop(); 
 event result_t fired (); 
}   

Timer.nc

where start and stop are the commands provided by this component and it 
handles the fired event. As such, the user of this interface will be called 
when the timer event triggers. 

To handle concurrency, TinyOS is designed with no blocking operations. 
For long latency operations, a split phase design is employed in which separate 
functions are defined for requesting and signalling the completion of the opera-
tion. For example, sending a radio message could take a relatively long time, 
and it is often handled by the radio transceiver. As in the case of BSN node, the 
CC2420 handles the transmission of the message. Instead of waiting for the ra-
dio transceiver to complete the transmission task, a split phase design is used by 
defining the SendMsg interface:

includes AM; 
interface SendMsg {
 command result_t send(uint16_t address,
   uint8_t length, TOS_MsgPtr msg); 
 event result_t sendDone(TOS_MsgPtr msg,
   result_t success); 
} SendMsg.nc

In this code snippet, separate functions are defined for sending the message 
(send) and signalling the completion of the transmission (sendDone). By us-
ing the split-phase operation, the processor can be released to handle other 
events and tasks. 
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B.4.1.2 Configuration  

Configurations are components constructed by writing components together and 
specify the properties of the components. The following is an example configu-
ration file for a component called MyLedC.

configuration MyLedsC { } 
implementation { 
 components Main,MyLedsM,TimerC,LedsC,SimulatedMsgC; 
 Main.StdControl -> TimerC.StdControl; 
 Main.StdControl -> MyLedsM.StdControl; 
 Main.StdControl -> SimulatedMsgC.Control; 
 MyLedsM.Timer  -> TimerC.Timer[unique("Timer")]; 
 MyLedsM.Leds  -> LedsC;
 MyLedsM.SendMsg -> SimulatedMsgC.Send;
} MyLedC.nc

The MyLedsC is an application program that is implemented by wiring the 
Main, MyLedsM, TimerC, LedsC, SimulatedMsgC components together, 
as depicted in Figure B.33. As shown in the diagram, the Main component uses 
the StdControl interfaces provided by the TimerC, MyLedsM and Simu-
latedMsgC components. When any of the commands of the StdControl
interface is called, the corresponding commands in all three wired components 
will be executed accordingly. Unlike other simple interfaces, the Timer inter-
face is a parameterised interface which provides an array of interfaces. To iden-
tify an instance of an interface, an identifier has to be used, and in this case the 
function unique(“Timer”) is used to obtain an unique identifier for speci-
fying the time instance. The unique function returns a different value every 
time the function is called with the same argument string [21].  

Main

MyLedsM

LedsCTimerC SimulatedMsgC

StdControl

Control

SendMsg
Leds

Timer

MyLedsC

Figure B.33 Wiring diagram of MyLedsC.
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For interconnection, the components must be compatible where interfaces wire 
to interfaces, commands to commands, and events to events. nesC specifies 
three types of wiring statements: 

• endpoint1 = endpoint2
Equal wires: any connection that involves an external element 

• endpoint1 -> endpoint2
Link wires: any connection that involves two internal elements 

• endpoint1 -> endpoint2
Equivalent to endpoint2 -> endpoint1

For example, in the following source configuration of the SimulatedMsgC
component, the Control and SimulatedMsgM.StdControl are linked 
with an equal wire (as Control is an external interface), and the Simulat-
edMsgM.Leds and LedsC are linked with a link wire (as the Leds interface 
is linked internally). Figure B.34 illustrates the external and internal wiring of 
the SimulatedMsgC component.  

configuration SimulatedMsgC { 
 provides { 
   interface StdControl as Control; 
   interface SendMsg;  
 } 
}
implementation { 
 components SimulatedMsgM, LedsC; 
 Control = SimulatedMsgM.StdControl; 
 SendMsg = SimulatedMsgM.Send; 
 SimulatedMsgM.Leds -> LedsC; 
}   SimulatedMsgC.nc

LedsC

SimulatedMsgM

Leds

Control

SendMsg

SimulatedMsgC

Figure B.34 Wiring diagram of SimulatedMsgC. 
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B.4.1.3 Modules 

Similarly to the C/C++ source file, modules in nesC implement the functions in 
C for the specific components. All of the commands (events) specified in the 
component’s configuration must be implemented in the module. As an example, 
the module for the MyLeds component can be shown as follows: 

module MyLedsM { 
 provide interface StdControl; 
 uses { 
  interface Timer; 
  interface Leds; 
  interface SendMsg;
 } 
}
implementation { 
 uint16_t count; 
 command result_t StdControl.init() { 
  call Leds.init();  
   count=0; 
  return SUCCESS;  
 } 
 command result_t StdControl.start() {
  // Start a repeating timer that fires every 100ms 
  return call Timer.start(TIMER_REPEAT, 100);  
 } 
 command result_t StdControl.stop() { 
  return call Timer.stop();  
 } 
 event result_t Timer.fired() { 
  call Leds.greenToggle(); 
  if (count == 30) { 
   call SendMsg.send(0,0,0);//sending a null message 
    count=0;  
  } 
  count++; 
  return SUCCESS; 
 } 
 event result_t SendMsg.sendDone(TOS_MsgPtr msg, 
               result_t success) {  
  call Leds.redOff(); 
  Return success;
 } 
}   MyLedM.nc

As specified in the configuration file described in the previous subsection, the 
MyLed component provides the StdControl interface and uses the Timer,
Leds, and SendMsg components. To provide the StdControl interface, the 
init(), start() and stop() commands are implemented in the module 
for initialising the Leds, and starting and stopping the Timer. In addition, the 
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fired and the sendDone functions are implemented for handling the events 
received from the Timer and SendMsg interfaces.  

In addition to conventional C function calling scheme, nesC defines three 
additional function activation schemes for different types of functions:  

• call (for commands) 
• signal (for events) 
• post (for tasks) 

By explicitly defining function calling schemes for different types of functions, 
the activation schemes can assist the development of the software and ensure the 
safety of the programs. Different function calling schemes are demonstrated in 
the following source code for the SimulatedMsg module. 

module SimulatedMsgM { 
 provides { 
  interface StdControl; 
  interface SendMsg as Send;
 } 
 uses interface Leds; 
}
implementation { 
 command result_t StdControl.init() { 
  call Leds.init();  
  return SUCCESS;
 } 
  command result_t StdControl.start() { 
  return SUCCESS;  
 } 
  command result_t StdControl.stop() { 
   return SUCCESS;  
 } 
  // task for simulating as if the  
 // processor is busy sending 
  task void simulateSending() { 
  uint16_t i; 
  for (i=0;i<500;i++)  //wait for 500 ms 
   TOSH_uwait(1000);//wait for 1000 micro-second 

signal Send.sendDone(0, FAIL);
}

  command result_t Send.send(uint16_t address,  
   uint8_t length, TOS_MsgPtr msg) { 

call Leds.redOn(); 
post simulateSending(); 

  return SUCCESS;  
 } 
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  default event result_t Send.sendDone( TOS_Msg Ptrmsg,  
   result_t success) { 
  return success;  
 } 
}    SimulatedMsgM.nc

As shown in the source code, the event sendDone is triggered by signalling 
the function. The task simulateSending() is initiated by posting the task 
onto the scheduler.  

Since the SimulateMsg component provides the SendMsg interface, it 
implements the send and sendDone functions specified for the interface. As 
the sendDone is an event handler aiming to act as a call back function to sig-
nal other components that use the interface, the sendDone function is defined 
as a default function. Therefore, it can be signalled even if the SendMsg in-
terface is not connected. 

B.4.2 Execution Model 

To optimise resource utilisation, TinyOS uses an event-based execution model 
where the program components are activated in response to events or hardware 
interrupts. In addition, TinyOS also provides an execution mechanism called 
tasks for handling operations with long-latency. As such, the TinyOS has two 
levels of scheduling. As events are designed for time-critical operations, they 
have higher priority than tasks, and can pre-empt tasks. On the other hand, tasks 
are designed for computationally intensive processes which can be run in the 
background. Figure B.35 shows an example of how tasks and events are sched-
uled in TinyOS. 

time

Event 0

Task 1

Event 1

pre-emptedTask 0 Task 0

Figure B.35 TinyOS scheduling example.

B.4.2.1 Events 

Events are time-critical processes for handling incoming events or hardware in-
terrupts. As events are only activated when required, their use requires minimal 
resource utilisation and low power consumption. For this reason, TinyOS sys-
tem modules are designed as events. An event is designed to run to completion 
without any interruption from tasks or other events. An example software event 
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sendDone is shown in the following code segment of the SimulatedMsg
module: 

task void simulateSending() { 
 uint16_t i; 
 for (i=0;i<500;i++) //wait for 500 ms 
  TOSH_uwait(1000);//wait for 1000 micro-second 
signal Send.sendDone(0, FAIL); 

 } 
default event result_t Send.sendDone(TOS_MsgPtr msg,
        result_t success) { 
  return success;
}

B.4.2.2 Tasks 

Tasks are designed for long-latency computations that can be run in the back-
ground. Unlike the tasks defined in PC-based operating systems, tasks are not 
pre-empted in TinyOS, and are designed to run to completion. To manage tasks, 
a simple FIFO-based scheduler is employed to decide the order of task activa-
tions. Although tasks cannot pre-empt tasks, tasks can be pre-empted by events 
in order to handle time-critical operations. An example of a task is shown in the 
following code segment of the SimulatedMsg module: 

task void simulateSending() {
 uint16_t i; 
 for (i=0;i<500;i++) //wait for 500 ms 
  TOSH_uwait(1000);//wait for 1000 micro-second 
 signal Send.sendDone(0, FAIL); 
 } 
command result_t Send.send(uint16_t address,
     uint8_t length, TOS_MsgPtr msg) { 
 call Leds.redOn(); 
post simulateSending(); 

 return SUCCESS;  
}

Here the SimulateSending task is designed to simulate the delay that oc-
curs during message sending. 

B.4.2.3 Atomic Statements 

Atomic statements provide mutually exclusive operations where the section of 
code will be run to completion without interruption from other tasks, in order to 
avoid race conditions. The use of atomicity is illustrated in the following code 
segment:  
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task void simulateSending() { 
 uint16_t i; 
atomic { 

  for (i=0;i<500;i++) //wait for 500 ms 
   TOSH_uwait(1000);//wait for 1000 micro-second 
}

 signal Send.sendDone(0, FAIL); 
 } 

The section of code highlighted as atomic will be guaranteed to run exclusively 
without interruption. To ensure atomicity, calling commands or signalling 
events are prohibited inside atomic statements.  

B.4.3 Hardware Abstraction  

Since hardware platforms are expected to evolve rapidly, TinyOS needs to be 
easily adaptable and extendable to different hardware platforms and components 
in order to sustain its role for WSN research and development. To this end, 
flexible hardware abstraction architecture has been incorporated into the 
TinyOS to simplify the adaptation of the OS to different platforms [22, 23]. To 
provide platform-independent interfaces, the hardware abstraction of TinyOS is 
designed as a three-layered architecture with high-level components, whilst at 
the same time maintaining the freedom to access the low-level mapping of 
hardware features. These three layers include: 

• Hardware Presentation Layer (HPL)
This is the lowest layer, which presents the capabilities of the 
specific hardware platform. This layer provides access to the 
hardware via memory mapping or I/O port setting, and it han-
dles hardware interrupts or forwards the interrupts to higher 
layers.

• Hardware Adaptation Layer (HAL)
The adaptation layer provides abstractions on the raw inter-
faces provided by the HPL layer and exports domain-specific 
interfaces, such as the ADC channels and EEPROM pages.  

• Hardware Interface Layer (HIL)
The interface layer ports the platform-specific interfaces pro-
vided by the HAL to platform-independent interfaces for 
cross-platform applications. 

Figure B.36 illustrates the design of the three-layer hardware abstraction archi-
tecture. As an example, MicaZ, BSN Node and HW Platform X are shown in 
the diagram. For each platform, three layers of abstractions are required to sup-
port cross-platform applications. Because of this, in order to port TinyOS to a 
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new platform, components have to be developed to provide the abstractions re-
quired. In addition, apart from abstracting the raw interfaces provided from 
HPL, HAL also enables the access of particular platform features for platform-
specific applications, as shown in Figure B.36.  
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BSN Hardware Platform X

Cross platform applications
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Figure B.36 TinyOS hardware abstraction architecture. 

Figure B.37 gives an example of hardware abstraction for wireless commu-
nication via the CC2420 transceiver. As illustrated in the simplified diagram, 
the processor’s registers are present in the HPL layer, whereas the SPI interface, 
I/O pins and interrupts are described in the HAL layer. As an SPI interface is a 
common accessory for hardware platforms, a generic HIL layer provides the 
cross-platform interface for SPI communication. As the CC2420 interfaces with 
the MCU through the SPI interface, although the registers of the CC2420 are 
low-level elements, the HPL layer of the CC2420 (which represents the CC2420 
registers) is on top of the HIL SPI layer. The CC2420 functions are then repre-
sented by the CC2420RadioM and CC2420ControlM components. Based on the 
CC2420 functions, cross-platform high level components, such as Generic-
Comm and RadioCRCPacket, can be built to provide high level wireless net-
work functions. 

B.4.4 TOSSIM 

Since limited resources are available for wireless sensor hardware and virtually 
no user interface is provided for the sensors except for the LEDs, debugging 
programs with TinyOS is one of the most laborious tasks in embedded system 
development. To alleviate this problem, the TinyOS simulator, TOSSIM, has 
been introduced [24]. TOSSIM is a discrete event simulator for TinyOS which 
allows users to compile, debug and analyse their TinyOS applications on a PC 
rather than using the hardware [16].  
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Figure B.37 The hardware abstraction for wireless communication. 

To simulate the behaviour of sensors, the TOSSIM models the low level 
components of the sensor, which include the radio transceiver, ADC, and 
EEPROM. To enable a detailed study of wireless network behaviours, TOSSIM 
simulates the radio in bit-level, but at present it only implements the Mica’s 
40Kbit RFM [16] and Mica2’s CC1000 radio [25].  The simulation model for 
the CC2420 radio has recently been developed, but it is still at the beta testing 
stage.  However, extensive functions are provided for simulating different net-
work configurations. In addition, in order to model sensor behaviour, ADC 
function is provided by TOSSIM for simulating random and manual alteration 
of ADC readings. To validate the sensor data storage, TOSSIM models the 
EEPROM, through mapping the memory to a file in which all data to be stored 
in the EEPROM is saved. 

B.4.4.1 Running the Simulator 

TOSSIM is built directly from the TinyOS source code. To simulate a sensor 
node, rather than running the program for a specific sensor platform, the tester 
runs the program for the PC platform. For example, to make the simulated pro-
gram for the Blink application run the following code: (Note: details on how to 
compile and make TinyOS applications can be found in Section B.5 BSN Pro-
gramming Guide) 

>cd /tinyos-1.x/bsn/Blink 
>make pc 
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After making the program, the TOSSIM executable, main.exe, is created and 
stored in the /build/pc directory (i.e. for the blink program, the executable 
will be /tinyos-1.x/bsn/Blink/build/pc/main.exe). The 
TOSSIM executable has the following usage[16]: 

Usage: ./build/pc/main.exe [options] num_nodes 
where[options] are: 

Options Descriptions 
-h, --help Display the help message 
-gui Pause simulation waiting for GUI to connect 
-a=<model> Specifies ADC model (generic or random) 
-b=<sec> Boot over first <sec> seconds 
-ef=file Use <file> for EEPROM 
-l=<scale> Run sim at <scale> times real time (fp constant) 
-r=<model> Specifies a radio model (simple, static or lossy) 
-rf=<file> Specifies file input for lossy model 
-s=<num> Only boot <num> nodes 
-t=<sec> Run simulation for <sec> virtual seconds 
num_nodes Number of nodes to simulate 

For example, to simulate one node: 

>./build/pc/main.exe 1

B.4.4.2 Debugpger  

TOSSIM provides runtime debugging by displaying chosen debug messages. 
For runtime debugging, debug messages have to be explicitly coded into the 
programs, for example: 

dbg(DBG_BOOT, "Application initialised\n")

Each debug message is tagged “DBG_”, which represents the mode of the mes-
sage. In this case, the mode of the message is “boot” (i.e. DBG_BOOT). Table 
B.7 lists the defined modes for debugging. As well as identifying the mode of 
the debug message, the tag is also used to enable TOSSIM to identify and dis-
play specific debug messages. For example, to display the boot message, export 
the DBG=boot then run the simulator as follows: 

>export DGB=boot 
>./build/pc/main.exe 1

In addition to displaying real time messages, the TOSSIM executable, 
main.exe, can be debugged using GDB in which users can step through the 
programs.  
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• To use gdb:

>gdb build/pc/main.exe 

• To insert a break point in the fired() function of the 
MyLedsM component described in the previous section: 

(gdb) break *MyLedsM$Timer$fired 

Note that ‘.’ which identifies subordinate interfaces and func-
tions of a component in nesC, are replaced by ‘$’ which are 
required by GDB to identify a specific element. The ‘*’ sign 
instructs the gdb command line parser to parse the function 
call properly. 

• To start the executable (in debug mode): 

(gdb) run 1 

The number “1” identifies the number of instance of the ex-
ecutable to be run by the gdb. Once the executable is running, 
the gdb will stop at the predefined break points to allow the 
user to examine the value of the variables, and the executable 
will remain stopped until the user issues a next, nexti,
continue or finish, etc. command to the gdb. 

• To examine the value of a variable: 

(gdb) print MyLedsM$count[0] 

In the above example, the value of the variable count in the 
component MyLedsM of the node 0 will be displayed. 

• To continue running the program: 

(gdb) continue 

• To step through the program: 

(gdb) next 
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B.4.4.3 Graphical Visualisation Tool  

To aid in the development of TinyOS applications with TOSSIM, a graphical 
visualisation tool, called TinyViz, has been developed by Berkeley[16]. In addi-
tion to displaying the simulated network layout in order for the user to visualise 
the configuration of the network, TinyViz also provides an intuitive user inter-
face for developers to alter the parameters of their simulated programs. Figure 
B.38 demonstrates a screenshot of the TinyViz program, in which the left win-
dow displays the sensors in the virtual environment, and the right window pro-
vides the interfaces to a series of different plug-ins that enable the alteration of 
sensor and network behaviours. 

Apart from being a user interface and visualisation tool for TOSSIM, Tiny-
Viz is designed as a framework for plug-ins into which Java plug-ins can be 
added to extend the functionality of the simulator to cope with different scenar-
ios. For instance, a plug-in called PowerTOSSIM has been added to simulate the 
power consumption of the individual sensor and the network as a whole[25]. 

Table B.7 TOSSIM debug modes[16]. 

Modes Description 
all Enable all available messages 
boot Simulation boot and StdControl 
clock The hardware clock 
task Task enqueueing/dequeueing/running 
sched TinyOS scheduler 
sensor Sensor readings 
led LEDs 
crypto Cryptographic operations 
route Routing systems 
am Active messages transmission/reception 
crc CRC checks on active messages 
packet Packet-level transmission/reception 
encode Packet encoding/decoding 
radio Low-level radio operations: bits and bytes 
logger Non-volatile storage 
adc ADC 
i2c I2C bus 
uart UART 
prog Network programming 
sounder Sounder  
time Timers 
sim TOSSIM internals 
queue TOSSIM event queue 
simradio TOSSIM radio models 
hardware TOSSIM hardware abstractions 
simmem TOSSIM memory allocation/de-allocation 
usr1 User output mode 1 
usr2 User output mode 2 
usr3 User output mode 3 
temp For temporary use 
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Figure B.38 TinyViz. 

To use TinyViz, the user has to build the java program first: 

>../tools//java/net/tinyos/sim/make

To use TinyViz to simulate a network of sensors:  

>../../tools/java/net/tinyos/sim/tinyviz -run
 build/pc/main.exe 30 

In the above example, the number 30 indicates thirty sensor nodes will be simu-
lated by TOSSIM. 

B.4.5  Deluge: TinyOS Network Programming 

In order to facilitate the dissemination and maintenance of WSNs, Hui et al in-
troduced a TinyOS tool called Deluge, which enables dynamic programming of 
the TinyOS hardware via the wireless network [17]. By utilising the external 
flash memory, Deluge allows up to three different program images to be stored 
in each sensor. To provide a reliable and efficient update of the programs, Del-
uge is based on an epidemic propagation protocol, where program images are 
first broken down into pages and packets, followed by their propagation to all of 
the sensor nodes in the network.  

Deluge has been incorporated into the TinyOS (since version 1.11.14) at the 
point where a bootloader program, called TOSBoot, is preloaded into the first 
section of the microcontroller’s flash memory in addition to the application pro-
gram. Similarly to the booting program for a PC, the TOSBoot is executed 
whenever the senor node is reset (all three LEDs will flash when TOSBoot is 
called after reset). Depending on the previous received reprogramming instruc-
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tion, the TOSBoot will load the desired program image from the external flash 
memory and program the microcontroller accordingly.  

To enable Deluge, the external flash memory has to be formatted for storing 
program images and the Deluge component has to be incorporated into the ap-
plication program. To set up the node for Deluge: 

• Format the flash – compile and install the “Flash Format” 
Program [tinyos-1.x\apps\TestDeluge\Flash- 
Format]

• Install the DelugeBasic program to the node [tinyos-
1.x\apps\TestDeluge\DelugeBasic]

The node ID (used in uploading the program to the sensor node) will be used as 
the address of the node. For adding Deluge support to your program, you need 
to take the following steps: 

• Modify the configuration file of your program to add the Del-
ugeC component  

configuration Blink{ } 
Implementation { 
  Components Main,BlinkM,…,DelugeC;
  Main.StdControl->DelugeC; 
  Main.StdControl->BlinkM.StdControl;……… 
}

To program the sensor nodes wirelessly using Deluge: 

• Set the COM port 

>Export MOTECOM=serial@COM2:telos 

• Ping the node (in order to check that the program images have 
been installed on the node) 

>java net.tinyos.tools.Deluge –ping 

• Install a program image 

>java net.tinyos.tools.Deluge –i 
 –ti=tos_image.xml –in=0 

Here tos_image.xml can be found in the .\build\bsn
directory.  The parameter “-in=0” identifies the program 
image [0-2], and in this case, the program image number 0 is 
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being updated.  While the program is being injected to the 
node, the program is also distributed to other nodes in the 
network.  Up to three program images [0-2] can be stored in a 
sensor node, and Deluge allows the users to reboot the sensor 
node with any of the three program images. 

• Reprogramming the node with program image “1” 

>java net.tinyos.tools.Deluge –r –in=1 

B.5 BSN Programming Guide 

To facilitate BSN development, this section outlines the required software de-
veloping tools and provides a step-by-step programming guide for users to get 
familiar with the programming environment.   

B.5.1 Programming Environment 

To develop BSN applications, several software developing tools are needed: 

• Cygwin (http://www.cygwin.com)
Cygwin is a Linux-like environment for Windows which emu-
lates Linux functions in a Windows operating system. A col-
lection of Linux tools are provided by Cygwin to emulate the 
Linux environment, such as cp, rmdir, gcc, etc. As the TinyOS 
compiler, linker, etc. are Linux-based, Cygwin is required to 
build TinyOS applications.  

• TinyOS (http://www.tinyos.net/)
TinyOS consists of a number of components, example source 
code and documentation that can be of immense help in the 
the development of BSN application programs.  

• nesC (http://nesc.sourceforge.net)
In order to build TinyOS application programs, the nesC com-
piler is required. This converts TinyOS components into plat-
form-specific C source code as required. 

• TI MSP gcc Compiler/Bootstrap Loader 
(http://nesc.sourceforge.net)
In order to build program binaries and upload those binaries 
into the TI processor on the BSN node, the TI MSP gcc com-
piler and the bootstrap loader are required. The TI gcc com-
piler converts the C source code generated by the nesC com-
piler into the TI-specific machine binary code, and the 
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bootstrap loader allows the user to upload the program binary 
into the TI processor through the serial port. 

• Java JDK (Java Development Kit)/Java COMM API 
(java.sun.com)
As TOSSIM and Deluge are Java-based programs, the Java 
JDK is required to run these programs, and as Deluge uses the 
Java COMM API to communicate to the node, the Java 
COMM API is required to run Deluge. 

• USB Programmer Driver (http://www.ftdichip.com/)
To use the USB programmer, the driver for the USB interface 
chipset has to be installed. This will emulate a USB serial port 
and thus enables serial communication to the BSN node. 

• Text Editor/IDE (Integrated Developing Environment)
To edit the source code, any text editor or IDE can be used. 

B.5.2 Installation Instructions  

All of the above software developing tools can be downloaded from the Inter-
net, and detailed instructions are provided on the respective websites. To ensure 
compatibility and support for the latest software updates, the installation infor-
mation is available on our web site: http://www.bsn-web.info.

B.5.3 BSN Node Programming  

TinyOS provides a detailed tutorial with sample programs to demonstrate how 
to develop TinyOS applications. Instead of exhaustively detailing all of the ele-
ments of TinyOS, this subsection aims to provide a brief introduction to BSN 
programming by using two simple programs. For in-depth description of 
TinyOS, readers are suggested to go use the TinyOS tutorial, which can be 
found at http://www.tinyos.net/tinyos-1.x/doc/tutorial/. 

B.5.3.1 Blink Program  

Similarly to the “hello world” programs described in most software program-
ming books, the “blink” program (which is similar to the “blink” program used 
in the TinyOS tutorial) is a very simple program and is an ideal exercise for the 
first time TinyOS programmer. The blink program simply toggles the red LED 
on a BSN node based on a timer. The source code for the blink program can be 
found in the \tinyos-1.x\bsn\blink directory. The configuration file 
and module for the blink component are shown below: 
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configuration Blink {} 
implementation { 
 components Main, BlinkM, TimerC, LedsC; 
 Main.StdControl -> TimerC.StdControl; 
 Main.StdControl -> BlinkM.StdControl; 
 BlinkM.Timer -> TimerC.Timer[unique("Timer")]; 
 BlinkM.Leds -> LedsC; 
}   Blink.nc

module BlinkM {
  provides interface StdControl; 
  uses {  
  interface Timer; 
   interface Leds;  
 } 
}
implementation { 
bool state; 

 command result_t StdControl.init() { 
  call Leds.init();  
  call Leds.redOn(); 
  state=0; 
  return SUCCESS;
 } 
 command result_t StdControl.start() { 

call Timer.start(TIMER_REPEAT, 100); 
  return SUCCESS;   
 } 
 command result_t StdControl.stop() { 
  return call Timer.stop();   
 } 
 event result_t Timer.fired() { 
  state = !state; 
  if (state) call Leds.redOn(); 
  else call Leds.redOff(); 
 return SUCCESS;   
 } 
}   BlinkM.nc

Figure B.39 depicts the wiring diagram of the blink component. As shown in the 
diagram and in the configuration file, the Main component uses the StdCon-
trol interface provided by both BlinkM and TimerC. BlinkM uses the 
Timer interface from TimerC and Leds from LedsC. To provide the 
StdControl interface, BlinkM has to implement the init(), start()
and stop() commands as shown in BlinkM.nc. In addition, the function 
fired() is included for handling the event from the Timer interface. By us-
ing the Timer and the Leds interfaces, the Blink program toggles the red LED 
on and off every 100ms based on a variable state.
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Main

BlinkM

LedsCTimerC

StdControl

LedsTimer

BlinkC

Figure B.39 Wiring diagram of the blink component. 

B.5.3.2 Programming the BSN Node  

To program the BSN node, you need to perform the following steps.  

• Start “cygwin”. 

• Change to the TinyOS program directory. 

>cd /opt/tinyos-1.x/bin/blink 

• Compile the source code:  

>make bsn 

• If the program compiles successfully, no error message will be 
shown. The compiler will display the memory usage of the re-
sulting program, as shown in Figure B.40.  

Once the program is compiled, the program binary can be uploaded to the BSN 
node.  

• To do this, plug the BSN node into the USB programmer and con-
nect it to the PC, as shown in Figure B.41. 
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Figure B.40 A screen short of the nesC compiling result. 

Programming/Communication

BSN node

USB Programmer

Programming/Communication

BSN node

USB Programmer

Figure B.41 Using the USB programmer to program a BSN node. 

• Find out which COM port the USB programmer has been as-
signed to. (To do this, use the motelist program as shown be-
low): 

>motelist

Figure B.42 shows the result of running the motelist program, and it finds a 
BSN USB programmer connected to COM4. 

Figure B.42 Motelist program result. 
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• To upload the program onto the BSN node: 

>make bsn reinstall.xxx bsl,yyy 

Here xxx is the unique identifier for the node, and yyy is the value of the COM 
port -1. For example, if COM4 is assigned to the programmer, the command 
would look like this: 

>make bsn reinstall.1 bsl,3

As shown, the ID of the BSN node will be set to “1”.  Figure B.43 shows a 
screenshot of the result after uploading the program to a BSN node.  

In addition to compiling and reinstalling the program to the BSN node sepa-
rately, TinyOS also provides a command, called install, for compiling and up-
loading the program onto the BSN node in one statement:  

>make bsn install.1 bsl,3

Figure B.43 Uploading a program binary onto a BSN node.

B.5.3.3 Radio Test Program  

To demonstrate the wireless communication function of the BSN node, a simple 
RFTest program is designed. Two BSN nodes are required to test wireless 
communication between them. To do this, we require two different programs for 
the nodes, RFTestSend and RFTestRecv respectively. As shown in Figure 
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B.44, the RFTestSend is a transmitter program which sends the packets to the 
receiver, whereas the RFTestRecv program is designed to receive the packets.  

  RFTestSend   RFTestRecv 

Figure B.44 Radio test programs. 

The design of the program is relatively simple. The transmitter toggles its red 
LED and sends a packet to the receiver periodically (based on the time interval 
parameter PACKET_INTERVAL) and when the receiver gets the packet, it will 
blink the red LED at a lower frequency rate (half the frequency of the transmit-
ter).

RFTestSend 

In a similar manner to the blink program, RFTestSend uses the Timer and 
Leds interfaces to toggle the red LED and initiate the packet transmission. To 
send the packet to the receiver, the GenericComm component is used to han-
dle the RF packet transmission. The RFTestSend program can be found in the  
.\tinyos-1.x\bsn\Prg1\send directory, and the configuration file and 
module of the program are as follows: 

configuration RFTestSend{} 
 implementation { 
  components Main, RFTestSendM, GenericComm as Comm,  
   TimerC, LedsC; 
 Main.StdControl-> RFTestSendM; 
 RFTestSendM.CommControl->Comm; 
 RFTestSendM.CommSend->Comm.SendMsg[AM_MOTE_MSG]; 
 RFTestSendM.Timer-> TimerC.Timer[unique("Timer")]; 
 RFTestSendM.Leds-> LedsC;
}   RFTestSend.nc

module RFTestSendM{
 provides interface StdControl;  
 uses { 
  interface StdControl as CommControl; 
  interface SendMsg  as CommSend; 
  interface Timer   as Timer; 
  interface Leds;
 } 
}
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implementation { 
 enum app{ PACKET_INTERVAL = 100, };//100 ms  
  uint16_t  wSequenceNum;   
  bool    fPending; 
  TOS_MsgPtr pBuffer;    
  TOS_Msg  Buffer; 
 command result_t StdControl.init() { 
  call CommControl.init();  
  call Leds.init(); 
   wSequenceNum=0; 
  fPending  = FALSE; 
  pBuffer   =&Buffer;
  return SUCCESS;  
 } 
 command result_t StdControl.start() { 
  call CommControl.start(); 
  call Timer.start(TIMER_REPEAT, PACKET_INTERVAL); 
  return SUCCESS;
 } 
 command result_t StdControl.stop() { 
  call CommControl.stop();   
  call Timer.stop(); 
  return SUCCESS;
 }  
 event result_t Timer.fired() { 
  uint16_t *wPtr; 
  if(!fPending) { 
   call Leds.redToggle(); 
   wPtr=(uint16_t *)(pBuffer->data); 
   *wPtr=wSequenceNum++; 
   fPending = TRUE; 
   if(call CommSend.send(TOS_BCAST_ADDR,2,pBuffer)) 
    return SUCCESS; 
   fPending = FALSE;   
  } 
   return FAIL;  
 } 
 event result_t CommSend.sendDone(TOS_MsgPtr pMsg,  
   result_t success) { 
  if(fPending && pMsg==pBuffer) fPending=FALSE; 
   return SUCCESS;  
 } 
}    RFTestSendM.nc

As shown in the RFTestSendM module, the timer is set to trigger every 
100ms, and when the timer is fired, the program will toggle the red LED and 
send the packet, which consists of the sequence number (wSequenceNum), to 
the receiver.  
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RFTestRecv 

Similarly to the RFTestSend component, the RFTestRecv program uses the 
GenericComm to handle the RF packet communication and Leds for control-
ling the LEDs. However, as the RFTestRecv is designed to handle the packet 
received by the RFTestSend program, no timer is required. The source code 
for the RFTestRecv can be found in the .\tinyos-1.x\bsn\Prg1 
\recv directory, and is listed as follows:  

configuration RFTestRecv{} 
implementation { 
 components Main, RFTestRecvM, GenericComm as Comm,  
    LedsC; 
 Main.StdControl->RFTestRecvM; 
 RFTestRecvM.CommControl->Comm; 
 RFTestRecvM.CommRecv-> Comm.ReceiveMsg[AM_MOTE_MSG]; 
 RFTestRecvM.Leds-> LedsC;
}   RFTestRecvC.nc

module RFTestRecvM{
 provides interface StdControl;
 uses{ 
  interface StdControl as CommControl; 
  interface ReceiveMsg as CommRecv; 
  interface Leds;
 } 
}
implementation { 
 enum{ CHECK_MASK = 0x0001, }; 
 command result_t StdControl.init() { 
  call CommControl.init(); 
  call Leds.init(); 
  return SUCCESS;  
 }
 command result_t StdControl.start() { 
  call CommControl.start(); 
  return SUCCESS;
 } 
 command result_t StdControl.stop() { 
  call CommControl.stop(); 
  return SUCCESS;
 }  
 event TOS_MsgPtr CommRecv.receive(TOS_MsgPtr pMsg) {  
  uint16_t *wPtr; 
  uint16_t wSequenceNum; 
  wPtr=(uint16_t *)(pMsg->data); 
  wSequenceNum=*wPtr; 
  if( (wSequenceNum & CHECK_MASK) == CHECK_MASK) 
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   call Leds.redToggle(); 
  return pMsg; 
 } 
}        RFTestRecvM.nc

As shown in the RFTestRecv module, whenever a packet is received, the re-
ceived wSequenceNum will be checked against the mask (in order to blink the 
LED in half of the frequency of the transmitter) and the red LED will be toggled 
accordingly.

Compiling and Uploading to BSN 

To program the BSN nodes, you need to follow the instructions described in 
section B.5.3.2. However, different ID have to be set for each BSN node: 

• For RFTestSend,set the node ID to 1 

>make bsn install,1 bsl,yyy

• For RFTestRecv,set the node ID to 2 

>make bsn install,2 bsl,yyy

B.5.3.4 Packet Address 

As shown in the previous programs, a few addresses are predefined for packet 
transmission. Three constants are defined: 

• TOS_BCAST_ADDR: address for radio broadcasting (0xffff). 
• TOS_UART_ADDR: address for the USB (0x7e). 
• TOS_LOCAL_ADDRESS: denotes the local address (i.e. the 

BSN node address), which is assigned when uploading the 
program to the node. For instance, if we use the following 
command to upload a program to a BSN node: 

>make bsn install,2 bsl,3

The address of the node will be set to 2, i.e.
TOS_LOCAL_ADDRESS=2 for this node. 

B.5.3.5 Frequency and Channel Programming 

The IEEE 802.15.4 standard specifies sixteen channels within the 2.4GHz band 
numbered 11-26, and the CC2420 enables user programs to choose different 
channels for communication, as described in section B.2.2.10. In addition, 
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TinyOS provides a high-level abstraction on the channel setting and allows 
compile time channel changes by setting the parameter 
“DCC242_DEF_CHANNEL” in the makefile to the specific channel (11-26) as 
shown in the following example (makefile for the RFTestSend program): 

COMPONENT=RFTestSend
DEFAULT_LOCAL_GROUP := 0x44 
PFLAGS += -DCC2420_DEF_CHANNEL=12
include ../../Makerules  

makefile

B.6 Conclusions 

In this appendix, we have provided detailed information about the BSN devel-
opment kit and its programming guide. With its miniaturised and stackable de-
sign, the BSN development kit provides a rapid prototyping platform for BSN 
research and development. Due to the current pace of both hardware and soft-
ware development in wireless sensing, the hardware specification and software 
programming environment will continue to evolve. For this reason, we have 
provided a dedicated web site http://www.bsn-web.info that accompanies the 
contents of this book. Interested readers can use this site to find out the latest 
updates and useful programming resources.   
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Class-specific activation, 309, 311-

313, 318, 319, 322, 325 
Cluster tree network, 147 
Clustering, 291, 295, 303, 316, 324, 

343 
Agglomerative clustering, 255, 

256 
Clustering algorithms, 255 
Distance based clustering, 255 
Fuzzy c-means clustering, 257 
Hierarchical clustering, 256 
ISODATA clustering, 255, 256 
k-Means clustering, 254, 255, 

257 

Single linkage hierarchical 
clustering, 316 

Cochlear implant, 12, 21 
Coexistence, 173 
Cognitive activities, 289 
Collision, 350, 351, 357 
Communication protocol, 407, 410, 

411 
Communication range, 172 
Complementary Metal-Oxide-

Semiconductor (CMOS), 219,  
225-230, 235-237, 378, 382, 
384, 385, 386 

Conductivity, 119, 120, 138 
Conductometric sensors, 384 
Confusion matrix, 315-317, 320, 321 
Context Toolkit, 415 
Context-aware sensing, 252, 258, 

401 
Context-aware, 287-289, 292, 

295, 297, 303, 307, 320, 323 
Context-aware applications, 287, 

288, 292, 306 
Context-aware architectures, 287, 

323 
Context-awareness, 5, 13, 18, 19, 

26, 30, 287, 288, 290, 291 
Context recognition, 291, 294, 

298, 324 
Context transition, 292, 295, 297 
Context-triggered action, 287 
Contextual adaptation, 288 
Contextual augmentation, 288 
Contextual reconfiguration, 287, 

288 
Contextual resource discovery, 

288 
Contextual sensing, 288 

Convergence, 305, 306 
Corrupting the routing information, 

356 
Commercial Off-The-Shelf (COTS), 

1, 404 
Covariance matrix, 248, 249, 254 
Cross-entropy evaluation, 265 
Cryptography, 17 
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Counter Mode Encryption (CTR), 
435 

Cutset conditioning, 343 
Cyclic voltammetry, 59-61, 73, 74 
Cygwin, 468, 471 
Cytochrome C Peroxidase (CCP), 97 
Cytochrome P450cam, 97 
Data normalisation, 293, 294, 300 
Data protection, 5 
Data visualisation, 303 
Decision trees, 296 

Metadecision trees, 296 
Defibrillation pulse, 142 
Deluge, 411, 452, 466-469 
Dempster-Shafer’s method, 242, 278 
Dendrites, 302 
Dendrogram, 256, 316 
Diabetes mellitus, 7, 10, 13 
Diagnostic capsule, 375, 381, 385 
Dielectric constant, 119, 124 
Differential method, 343 
Diffusion, 53-56, 60, 77-79, 83, 86 
Digital, 219-226, 231, 233-237 
Digital-to-Analogue Converter

(DAC), 411 
Dimensionality reduction, 258, 259, 

261, 262, 264, 280 
Direct Sequence Spread Spectrum

(DSSS), 431 
Directed Acyclic Graphs (DAG), 337 
Discrete Wavelet Transform (DWT), 

292 
Disease progression, 290 
Distance

Chebyshev, 254 
Mahalanobis, 254 
Minkowski, 254, 259 
Euclidean, 304 

Distance metrics, 253, 254 
Distributed inferencing, 252 
Distributed sensing, 32 
Distributed sensor networks, 1, 242 
Dot, 407, 416 
DSYS25, 405, 415, 417 
Duty cycle, 184 

Dynamic classes, 307, 309, 311, 313, 
318, 321 

Dynamic map, 310-312, 316-318, 
321, 322, 325 

Dynamic range, 97, 98, 112, 113, 
115 

E12 tag, 100 
Electrocardiogram (ECG), 6-8, 11, 

13, 239, 240 
Effective radiated power, 136 
Effector, 15, 23, 25 
Eigenvalue decomposition, 249 
Electrically Erasable Programmable 

Read-Only Memory (EEPROM), 
410, 416, 460, 462, 463 

Electrodes
Amperometric enzyme 

electrodes, 62 
Chemically modified electrodes, 

61
Ion selective electrodes, 44, 51 
Micro-Optical Ring Electrode

(MORE), 68 
pH electrodes, 44-46, 51, 82, 83 

Electroencephalography, 246 
Electromagnetic, 186-188, 190, 191, 

216, 217 
Electromagnetic field, 388 
Electronic nose, 373, 374 
Electron-transfer reaction, 54 
Electrostatic, 187, 189-191, 193, 

196, 198, 199, 203, 206, 217 
Elliptic curve cryptography, 362 
Ember, 405, 410, 417 
Electromyogram (EMG), 290, 295 
Emotion, 289, 290, 293, 295 
Encapsulation, 391 
Encryption, 435 
Endoscopy, 375, 378 
Endoscopy capsule, 13 
Energy modules, 215 
Energy scavenging, 5, 30-32, 183, 

186-188, 190, 191, 194, 213, 
215, 216, 400, 401 

EnOcean TCM120, 417, 418 
Environmental noise, 19 
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Environmental sensitivity, 95 
Enzymatic microbattery, 16 
Episode, 399 
Error correction, 140, 143 
ERTJ1VR103J, 445 
Estimation maximisation, 339 
Event detection, 5, 11 
Evolutionary design, 95 
Excitatory, 302 
Exhaustion and interrogation, 350, 

351 
Expectation Maximisation (EM), 

295, 296, 298 
eyesIFXv2, 405, 415, 417 
Fabrication, 31 
Factor graphs, 337 
Fading, 137, 143 
Fault tolerant sensing 

Fault detection, 336, 337 
Fault tolerance, 240, 241, 252, 

302, 324, 401 
Fault-tolerant architectures, 345 

Feature detection, 252 
Feature extraction, 291, 292, 307, 

315, 321, 324 
Peak-based feature extraction, 292 
Feature relevance, 264, 266 
Feature selection, 32, 258, 262-266, 

269-271, 274, 276, 277, 279, 
280, 315 

Feature space, 291 
Feed-through, 123 
Field-Effect Transistors (FET), 32 

ChemFET, 229, 230, 237 
EnFET, 229, 230 
GasFET, 229 
ISFET, 227-238 

Filter, 263, 265, 271, 279 
Finite State Machines (FSM), 298, 

299, 336 
First-order Markov model, 297 
Fisher Projection (FP), 259 
Fisher’s algorithm, 294 
Flash memory, 425, 426, 437, 438, 

466, 467 
Fleck, 405, 417, 418 

Flip-chip, 392 
Forward selection, 265, 270, 272, 

273 
Fourier coefficients, 253 
Frames, 292 
Frequency hopping, 158 
Frequency-Shift Keying (FSK), 406, 

407, 416 
FTDI FT232BM, 442 
Fuel cells, 16, 185, 186 
Fusion

Competitive fusion, 240 
Complementary fusion, 240 
Cooperative fusion, 240 
Decision-level fusion, 242, 274 
Direct data fusion, 242, 246, 278 
Feature-level fusion, 242 
Sensor fusion, 239, 240, 242, 

243, 252, 274, 275, 278-280 
Fuzzy set, 257 

Fuzzy logic, 252, 278 
Fuzzy membership, 255 

Gas Selective Membranes, 62 
Gas sensor, 374, 384, 392 
Gastrointestinal dysfunctions, 375 
Gastro-Oesophageal Reflux Disease

(GERD), 376, 378 
Gaussian 

Sub-Gaussian, 248 
Super-Gaussian, 248 
White Gaussian, 247 

gcc, 468 
GDSII, 387 
Generalised eigenvector, 244 
Generative Topographic Mapping

(GTM), 259 
Glucoamylase, 97 
Glucose, 7, 8, 13, 14, 16, 20, 23, 26, 

28
Glucose oxidase, 97, 106, 108, 109, 

112, 115 
Golem Dust, 414 
General Packet Radio Services

(GPRS), 3, 5 
Gyroscope, 295, 296 
Haemodynamic sensing, 240 
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Hard-failure, 336 
Hardware abstraction, 451, 452, 460-

462, 465 
Hardware Adaptation Layer, 460 
Hardware Interface Layer, 460, 

461 
Hardware Presentation Layer, 

460, 461 
Hardware Description Language

(HDL), 387 
Health Level seven (HL7), 175 
HealthService24 project, 150 
Heart failure, 6, 8 
Heart rate, 6-8, 18, 21, 23, 289, 290, 

294 
Heat flux, 295 
Heel strike, 187 
HELLO flood attacks, 350, 354, 355 
Hidden Markov Model (HMM), 294, 

296-301, 324 
Continuous density HMM, 296, 

299 
Higher-order cumulant, 248 
Hilbert transform, 73, 75, 76, 85 
HiperLAN/2, 159 
Histidine tag, 100 
HMM, see Hidden Markov Model
Hoaxes, 356, 358 
Hospital of the future, 9 
Human++, 406 
Humidity sensor SHT11, 412 
Hyper-plane, 258 
Hypertension, 6-8, 10, 14, 20 
I2C, 439, 450, 451, 465 
iBadge, 407, 415, 416 
ICA, see Independent Component 

Analysis
IEEE 802.11b, 169 
IEEE 802.15.1, 156, 169 
IEEE 802.15.4, 161, 169, 407, 410, 

423, 428, 431, 432, 434-436, 
477 

Clear Channel Assessment
(CCA), 163, 436 

Contention access period, 163 
Contention-free period, 163 

Energy detection, 163 
Frame format, 431 
Full function device, 162 
Guaranteed time slots, 163 
Link quality indication, 163 
Reduced function device, 162 
Superframe structure, 163 

IEEE 802.15.4a, 165 
IEEE 802.15.4b, 162 
IEEE P1073, 175, 177 
IEEE P1451, 178 
IEEE P802.15.3, 159 
Image sensor, 378, 382 
IMEC, 406 
Immune system 

Cellular immune system, 349 
Human immune system, 349, 

350, 362, 363 
Humoral immune system, 349 
Innate immune system, 349, 363 

iMote1, 406, 407, 416 
iMote2, 406, 407, 410, 417, 418 
Impedance measurement, 126 
Implantable cardioverter-

defibrillator, 14 
Implantable devices, 12, 14-16 
Implanted cardiac defibrillators, 142 
In-body communication system, 118, 

119, 125, 139, 143 
Independent Component Analysis

(ICA), 247-251, 293 
Independent components, 248 
Indirect motion, 293 
Inducer synthesis, 333 
Induction, 390 
Inductive coupling, 118, 119 
Industrial, Scientific and Medical

(ISM), 119, 140, 144, 155 
Inertial micro-generators, 187, 188 
Infection control, 139 
Infectious diseases, 8 
Inferencing, 291, 293, 318, 322 

Distributed inferencing, 302, 324 
Inflammatory mediators, 27 
Inflammatory multiple sclerosis 

lesions, 29 
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Inflammatory response, 104-106 
Infomax, 249, 250 
Information granularity, 291 
Inhibitory, 302 
Instance based learning, 254, 273, 

277 
Insulin, 7, 14, 19, 20, 23 
Integrated sensors, 374, 381, 382 
Interference, 174 
Inter-Integrated Circuit Bus (I2C),

411-414 
Iridium oxide film, 48 
Ischaemic heart disease, 8 
ISM, see Industrial, Scientific and 

Medical
ISM telemetry bands, 379 
Isometric mapping, 261-263, 272, 

276 
Jamming attack, 350 
Java

Java COMM API, 469 
Java Development Kit, 469 

Joint Directors of Laboratories
(JDL), 240 

Joint Probability Distribution (JPD), 
337, 338 

Kernel density estimation, 255 
k-Nearest neighbours, 255, 295, 296 
Laboratory-in-a-pill, 374, 382, 391 
Laboratory-on-a-chip, 374 
 messages, 340, 341 

Layout issues, 135 
Leakage current, 391 
Learning rate, 303-306 
Li-ion, 414 
Link budget, 128, 136, 142 
Lipocalins, 99, 113 
Livestock monitoring, 378 
Local Activation Long-range 

Inhibition (LALI), 333 
Locally Linear Embedding (LLE), 

260 
Long-term stability, 14, 103, 104 
Loopy belief propagation, 343, 344 
Low power operation, 427, 437 
Low-power processing, 258, 280 

Low-power transmitter, 381 
Lymnaea stagnalis, 59 
M2A capsule, 378, 391 
MAC, 431, 432, 435 
Machine learning, 239, 250, 262-

264, 280 
Macrophage, 29 
Magnetoencephalography, 246 
Manifold embedding, 252 
MANTIS, 415 
MAP explanation, 339 
Markov chain, 295, 297 
Markov networks, 337 
Markov Random Fields, 337 
Matching network, 125, 128, 135, 

140, 142, 143 
Match-X, 406 
Materials, 138 
Maximum likelihood estimation, 

250, 339 
Maximum weight spanning trees, 

339 
McCulloch-Pitts, 302, 303 
Medical Implant Communications 

Service (MICS), 119, 128, 134, 
136, 140, 155 

Medium Access Control, 407, 410 
MEMS integration, 400 
Mesh network, 147 
Mesokurtic, 248 
Message authentication code, 359 
Message passing, 339, 342, 344, 364, 

366 
Metabolic rate, 19, 290 
Mica, 405, 416 
Mica2, 404, 405, 407, 409, 416 
Mica2Dot, 407, 409, 415, 416 
MicaZ, 407, 410, 415, 417 
Micro Electro-Mechanical System

(MEMS), 10, 13, 14, 28, 29, 190, 
191, 195, 198, 209, 214, 215, 
217, 382 

Microcontroller units, 405-407, 410-
412 

Microfluidic, 374, 384, 400 
Microneedle, 14 
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Microneedle array, 400 
Micropower, 225, 231, 235, 390 
Microscopic parasite, 348 
Microsensor, 374, 381, 392 
Microsystems, 373, 374, 376, 379, 

392 
Miniaturisation, 1, 5, 13, 16, 21, 26, 

28, 29, 31 
Misclassification, 292, 307, 315 
Misdirection, 356 
MITes, 406, 415, 417 
MobiHealth project, 150 
Mobile body sensor network, 152 
Mobile phone, 150 
Model learning, 321 
Model simplification, 343 
Modelling, 200, 202, 216 
Most Probable Explanation (MPE), 

336 
MoteTrack, 151 
Motion artefacts, 5, 18, 32, 239 
Motion recognition, 289 
Motion scavenging, 187 
Multidimensional scaling, 259, 346 
Multi-layer coatings, 107 
Multiple target tracking, 344 
Multi-resolution, 307, 312, 315 
Multi-sensor, 373 
Multi-sensor calibration, 240, 279 
Multi-sensor fusion, 30, 32 
Multitasking, 415 
Myocardial ischaemia, 399, 400 
Nafion films, 49 
Nanoparticles, 28 
Nanoscale particles, 28, 29 

Nanostructured templated 
materials, 72 

Navigation, 291 
Near-field, 388, 390 
Negative temperature coefficient 

resistor, 445 
Negentropy, 248, 250 
Neighbourhood function, 304-306 

Gaussian neighbourhood 
function, 304 

Time-varying neighbourhood 
function, 305 

nesC, 452, 455-457, 464, 468, 472 
Atomic, 459 
Call, 457 
Commands, 452-454, 456, 457, 

470 
Configuration, 454 
Events, 452, 453, 455-458 
Interface, 452, 453 
Modules, 456 
Post, 457 
Signal, 457 
Tasks, 453, 457 

Netlist, 387 
Network authentication, 17 
Network scanning, 350, 355 
Network setup, 150 
Network topologies, 30, 31, 145 
Networks 

Ad hoc, 360 
Belief, 336, 337, 342 
Singly-connected, 339, 343 

Neural networks, 252, 258, 280 
Feed-forward, 258 
Kohonen, 258,  

see Self-Organising Map
Neuromorphic, 219, 220 
Neuron, 302-304 
Neurostimulation, 21 
Neurotransmitter, 41, 56, 57, 60, 84 
Neyman-Pearson decision rules, 275 
Node activation trajectories, 309 
Node expansion, 313-319, 322, 324 
Non-Gaussianity, 248 
Noninvasive techniques, 375 
Nonlinearity, 302, 324 
Non-overlapping channels, 174 
Normalised index entropy, 309, 310, 

316 
Nymph, 405, 416 
Obesity, 7 
Offset biases, 243-245 
Operating system, 415 

Embedded Linux, 415 
Embedded Microsoft XP, 415 
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Multithreaded Operating System, 
415 

Power Aware Lightweight OS, 
415 

SOS, 415 
TinyOS, 2, 411, 415-417, 423, 

451-453, 458-462, 465, 466, 
468, 469, 473, 478 

Events, 458 
Execution model, 458 
Tasks, 458, 459 

Optical imaging, 29 
Optical sensors, 384 
Optimal weighting coefficients, 243 
Optimum averaging, 244 
Oscillator, 375, 377 
Over-fitting, 262, 280 
Oxygen uptake, 290 
Pacemaker, 15 
Packaging, 374, 391, 392 
Packet address, 477 

TOS_BCAST_ADDR, 477 
TOS_LOCAL_ADDRESS, 477 
TOS_UART_ADDR, 477 

Pairwise key, 358, 360 
Parameter learning, 339 
Parametric generator, 191, 194, 196 
Parasitic effects, 133 
Parasympathetic system, 23 
Parkinson's disease, 8, 15 
Paroxysmal arrhythmias, 399 
Particle 2/29, 417 
Parzen window, 255 
Pathogens, 8, 27, 348 
Pattern classification, 254, 257, 258, 

274 
Pattern recognition, 61, 239, 242, 

254, 258, 262, 280 
Peak current, 390 
Peer-to-peer network, 147 
Penetration depth, 120 
Perceptron, 258, 295, 303 
Peripheral nerve fibres, 23 
Periplasmic binding protein, 95 
Perpetual powering, 400 
Personal digital assistant, 3, 11 

Personalised healthcare, 20-22 
Pervasive computing, 334, 335 
Pervasive healthcare, 10, 21, 22, 399 
Pervasive networks, 151 
Pervasive patient monitoring, 10, 13, 

23, 30 
Pervasive sensing, 290, 323 
pH, 374, 376-378, 382, 384, 392 
Pharmacological intervention, 290 
Pharmacotherapy, 6, 19 
Pheromones, 333 
Photoelectrochemistry, 68 
Physical barrier, 349, 363 
Physical design, 386 
Physiological barrier, 349, 363 

 messages, 340, 341 
Pico radio, 407 
Piezoelectric, 187, 190, 191, 216 
Piezoelectric discs, 16 
Place and route, 387 
Platykurtic, 248 
Pluto, 405, 407, 410, 417 
Point-to-point network, 147 
Polarisation, 137, 143 
Polytree algorithm, 339, 343 
Portable electronic devices, 31 
Post-operative monitoring, 8 
Potentiometric sensors, 384 
Potentiometry, 30, 51, 65 
Power budget, 390 
Power consumption, 15, 16, 18, 170, 

184, 185, 379 
Power electronics, 202, 205, 211, 

212, 217 
Power supply, 403, 406, 414 
PowerTOSSIM, 465 
Pressure, 375-377, 382 
Principal Component Analysis

(PCA), 258, 259, 264, 295 
Probability distribution, 293, 294, 

297, 299 
Gaussian distribution, 299, 300 

Processors
ARM processors, 406 
ATmega 128L, 405, 411, 416, 

417 
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MSP430, 405, 406, 411, 417 
MSP430F149, 425-427 
PXA 271, 406, 417 
StrongARM SA-100, 406 

Projection pursuit, 250, 259 
Propagation, 118, 136, 143 
Proprioception, 26 
ProSpeckz, 409, 410, 417 
Protein engineering, 400 
Protein immobilisation, 100 
Proximate selection, 287 
Psychiatric disorders, 290 
Quadratic SNR, 243 
Quality of Service (QoS), 5, 33 
Quarter wavelength line, 126 
Quorum sensing, 333, 334 
Radiation resistance, 124-127, 131 
Radio Frequency Identification

(RFID), 291, 296, 378, 390, 408 
Radio test program, 473, 474 
Radio transceiver, 405-407, 412, 

414, 415 
Radio transmission power, 437 
Radiotelemetry, 375, 377, 378 
RAM, 410, 416 
Rational design, 94, 95, 111, 112 
Receiver Operating Characteristic

(ROC), 264, 266-268, 271, 279 
Receiver tuning, 136 
Reduced Instruction Set Computer

(RISC), 405, 406 
Reference and Counter Electrodes, 

67
Renal failure, 8 
Rene, 404, 407, 416 
Respiration, 289 
Respiration sensors, 295 

Hall-effect respiration sensors, 
291, 295 

Respiratory rate, 7, 25 
Return loss, 125 
RF power, 436 
RFID, see Radio Frequency 

Identification 
RFM TR1000, 407, 416 
RFRAIN, 406, 415, 416 

Rheumatoid arthritis, 8, 290 
RISE, 406, 415, 417 
Routing 

APTEEN, 348 
Datacentric routing, 345 
Energy-aware routing, 345, 347 
Hierarchical routing, 345, 348 
Location-based routing, 345 
LEACH, 348 
PEGASIS, 348 
TEEN, 348 

RS232, 413, 414, 451 
RSSI, 436 
Sammon's mapping, 346 
SAW filter, 137, 139 
Search based method, 343 
Secure Network Encryption Protocol

(SNEP), 358-360 
Security, 5, 17, 18, 33, 429, 431, 435 
Security Protocols for Sensor 

Networks (SPINS), 358, 360 
Segmentation, 292 
Selective binding and catalysis, 62 
Selective forwarding, 350, 352-354 
Selectivity, 40, 41, 43, 44, 51, 58-62, 

70, 71, 81 
Self-

Self-* properties, 334, 336, 401 
Self-assembly, 29 
Self-adaptation, 335 
Self-configuration, 29, 335 
Self-healing, 334-337, 364, 366, 

401 
Self-integration, 335 
Self-management, 334, 335 
Self-optimisation, 335 
Self-organisation, 333, 334, 336, 

344-346, 348, 364, 401 
Self-protection, 334-336, 348, 

349, 362-366, 401 
Self-scaling, 335 

Self-Organising Map (SOM), 252, 
258, 259, 294, 295, 303-306, 
308, 309, 311-314, 318-322, 
326 

Growing Hierarchical SOM, 312 
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Hierarchical SOM, 307 
STSOM, 32, 306, 307, 309-313, 

315-318, 320-324, 326 
Self-resonant frequency, 133, 134 
SensiNet, 415 
Sensor calibration, 293 
Sensor failures, 347 
Sensor fouling, 43, 71, 72 
Sensor fusion, 291, 294 
Sensors 

Biosensor, 40-43, 51, 61-64, 71, 
80, 81, 83-85 

Chemical sensor, 40, 80 
Electrochemical sensors, 89 
Glaucoma sensor, 12 
Gravimetric sensors, 92 
Heat flux sensor, 19 
Implantable pressure sensor, 12 
Implantable sensors, 10, 12, 14, 

16, 18, 27, 100, 104, 106, 
108, 115 

Microsensors, 1 
Nanoscale sensors, 100 
Optical fibre sensors, 91 
Optical sensors, 89, 91, 92, 110 
Potentiometric sensors, 90, 91 
Skin conductance sensor, 295 

Serial Peripheral Interface (SPI), 
411-414, 427-430, 437, 461 

Serotonin, 56-59, 82 
Severinghaus type gas sensor, 51 
Short time window analysis, 291 
Short-range devices, 154 
Short-term memory, 307 
Signal conditioning, 184, 185 
Signal transduction, 94, 95, 100, 111 
Signal variations, 291, 292 
Signalling molecules, 333 
Simulink, 202 
Sinkhole attacks, 350, 352 
Skin conductance, 291, 294 
Small Autonomous Network Device

(SAND), 406 
Smart Dust, 1, 2 
Smart-its, 415, 416 
SmartMesh, 415 

SoC, see System-on-Chip
Social interaction, 288, 289, 324 
Soft-failure, 336 
Solar cells, 186 
SOM, see Self-Organising Map 
Soma, 302 
Source recovery, 246, 278 
Spec, 406, 416 
Specific absorption rate, 118 
Specificity, 89, 93, 94, 97, 99, 100, 

102, 113 
Spectroelectrochemistry, 68 
SPICE, 202-204, 211, 212 
SpO2, 413 
SpotOn, 407, 415, 416 
Square wave voltammetry, 59, 60 
Star network, 147 
Star-mesh hybrid network, 147 
State transition, 297, 299 
Static classes, 307, 311, 312, 314, 

317, 318, 321 
Static map, 309, 310, 315-318, 321, 

322, 325 
Statistical moments, 248 
Steady state techniques, 55, 56, 60 
Sterilisation, 103, 114 
Stochastic simulation algorithm, 343 
StrepTag, 100 
Stroke, 6, 8, 29 
Structure learning, 339 
STSOM, see Self-Organising Maps
Subject variability, 293 
Substrate, 122-124, 138 
Subthreshold, 222, 223, 231, 238 
Support Vector Machine (SVM), 

258, 292, 295, 296 
Swarm Intelligence, 333 
Sybil attacks, 350, 353 
Symbolic probabilistic inference, 343 
Symmetric key system, 360 
Sympathetic innervation, 24 
Synapse, 302, 303 
Synthesis, 387 
System-on-Chip (SoC), 373, 374, 

380, 384, 385, 406 
Telos, 405-408, 410, 412, 415, 417 
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Temperature, 375-378, 382, 384, 390 
Temperature sensor, 427, 443, 445 
Temporal signature, 310 
TESLA, 359 
Thermal energy, 186 
Thermoelectric sensors, 384 
Thermometers, 295 
Thyristor, 209 
Time synchronisation corruption, 

356, 357 
TinyDB, 452 
TinyOS, see Operating system 
TinyOS network programming, 466 
TinyViz, 465, 466 
Tissue damage, 70, 72, 74 
Tmote sky, 405, 407, 408, 410, 417 
Token passing algorithm, 301 
Top-down propagation, 340 
TOSSIM 

GDB, 463, 464 
TOSBoot, 466, 467 
TOSSIM, 452, 461-463, 465, 

466, 469 
TOSSIM Debugger, 463 

Tracking, 291, 292 
Traffic analysis, 350, 355 
Training data, 298, 300, 305, 307, 

308, 324, 325 
Transduction, 187, 189-192 
Transient abnormalities, 399 
Transient techniques, 57, 59, 60, 66 
Transition matrix, 294 
Transition probabilities, 294, 297, 

298 
Translinear circuits, 225, 232-234, 

238 
Transmission, 377, 378, 381, 388, 

390 
Transmitter tuning, 129 
Trimethylamine dehydrogenase, 97, 

112 
Trojan horse, 356, 358 
Tumour, 8, 29 
U3, 416 
UbiMon project, 150 
Ubiquitous computing, 403 

Ubiquitous monitoring, 291 
Ultra-low power processing, 333 
Ultra-small particles of iron oxide, 

29
Ultra-wideband, 156 
U-matrix, 308, 311 
Unicast messages, 358 
Universal Asynchronous 

Receive/Transmit (UART), 411,  
413, 414, 427, 439, 450, 451, 
465 

Universal Synchronous/ 
Asynchronous Receive/Transmit
(USART), 425, 427 

uPart0140ilmt, 406, 417 
Urea, 98, 102, 109, 113 
Urease, 98, 113 
USART, see Universal Synchronous/ 

Asynchronous Receive/Transmit
USB interface, 139 
USB programmer, 441-443, 469, 

471, 472 
Variable elimination, 343 
Variation between sensors, 293 
Variational methods, 343 
Vascular disease, 8 
Peripheral vascular disease, 7, 14 
VDMA, 406 
Virus, 348, 356, 358, 362-364 

Virus infection, 334, 356 
Vital Signs Information 

Representation (VITAL), 176 
Vital signs measurement, 7, 9 
Viterbi algorithm, 298 
Voltammetric sensors, 384 
Voltammetry, 30, 44, 52, 57, 65, 67, 

75, 76, 83-86 
Waveform statistics, 253 
Wavelength, 119, 120, 124 
Wavelet coefficients, 296 
Wavelet representation, 252, 253 
Weak inversion, 223, 231-235, 238 
WeC, 407, 416 
Well-being, 10, 11, 400 
Wheeler cap, 128 
Wilcoxon statistics, 267 
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Wireless communication, 1, 2, 16, 
30, 31, 184, 403, 406, 407, 
409, 410, 418 

Wireless medical telemetry service, 
155 

Wireless PANs 
High-rate, 159 
Low-rate, 161 
Medium-rate, 156 

Wireless regulation, 154 
Wireless sensor microsystems, 374, 

375 
Wireless Sensor Network (WSN), 1-

3, 5, 9, 10, 18, 403 
Wormholes, 350, 353, 354 

Worms, 356, 357 
Wrapper, 263, 265, 279 
WSN, see Wireless Sensor Network
XYZ node, 410 
ZigBee, 165, 169, 345, 410 

Application support sub-layer, 
167 

Coordinator, 166 
End device, 166 
Medical profile, 178 
Network layer, 166 
Profiles, 168 
Router, 166 
Security, 168 

Zinc-air, 414
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